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This paper launches a hybrid sampling approach, entailing a design-based approach in space followed by a
model-based approach in time, for estimating temporal trends of spatial means or totals. The underlying
space–time process that generated the soil data is only partly described, viz. by a linear mixed model for
the temporal variation of the spatial means. The model contains error terms for model inadequacy (model
or process error) and for the sampling error in the estimated spatial means. The linear trend is estimated
by Generalized Least Squares. The covariance matrix is obtained by adding the matrix with design-based es-
timates of the sampling variances and covariances and the covariance matrix of the model errors. The model
parameters needed for the latter matrix are estimated by REML. The error variance of the estimated regres-
sion coefficients can be decomposed into the model variance of the errorless regression coefficients and the
model expectation of the conditional sampling variance. In a case study on forest soil eutrophication, inclu-
sion of the model error led to a considerable increase of the error variance for most variables. In the topsoil
the contribution of the process error to the standard error of the estimated trend was much larger than that
of the sampling error. For pH there was no contribution of the model error. Important advantages of the
presented approach over the fully model-based approach are its simplicity and robustness to model
assumptions.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A major decision in designing sampling schemes for soil monitor-
ing is the choice between a design-based and a model-based sam-
pling strategy (Brus and de Gruijter, 1993, 1997; de Gruijter and ter
Braak, 1990; Papritz and Webster, 1995). In the design-based ap-
proach sampling units are selected by probability sampling, and the
inference is based on the sampling design. In a model-based strategy
sampling units need not be selected by probability sampling, and are
generally selected purposively, for instance such that they are well
spread out in geographic space (van Groenigen et al., 1999;
Walvoort et al., 2010) and/or in feature (predictor) space (Brus and
Heuvelink, 2007). The statistical inference is based on a stochastic
model of variation of the property of interest in space and/or time.

When sampling in space and time, in principle both sampling lo-
cations and sampling times can be selected by probability sampling.
In this case, a model of variation is not needed for statistical inference,
but the inference can be entirely based on the spatial and temporal
sampling designs. This fully design-based approach can be advanta-
geous in compliance monitoring of the space–time mean or space–
time total, e.g. the total annual CO2 emission in a region. In

compliance monitoring the aim is to decide (by statistical testing)
whether the sampling universe satisfies regulatory conditions. In
the fully design-based approach no model of variation is used,
which enhances the validity of the result. In compliance monitoring
validity of the result is of special importance in order to avoid a
hard to settle debate on whether the status of the soil complies
with the (legislative) standard or not. See Brus and Knotters (2008)
for an application on compliance monitoring of water quality.

As opposed to the fully design-based approach, in the fully model-
based approach the inference is based on a stochastic model of the
variation in space and time, and consequently neither sampling
times nor sampling locations need to be selected by probability sam-
pling. ter Braak et al. (2008) derived the Best Linear Unbiased Predic-
tor (BLUP) for the linear temporal trend of the spatial mean and its
variance under a universal kriging model (linear mixed model) in
which the variance of the residuals is modeled by a space–time vario-
gram with geometric anisotropy. This universal kriging predictor can
be used, for instance, to estimate the temporal trend of the spatial
means of soil properties such as carbon stocks and pH from legacy
data that usually are not collected from probability samples.

In this paper we introduce and demonstrate a hybrid, design-
based and model-based approach for sampling in space and time. In
this hybrid approach sampling locations are selected by probability
sampling, whereas times are not. We will show that, contrary to the
fully model-based approach in which the variation in both space
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and time is described by a model, in the hybrid approach the stochas-
tic space–time process is only partly described, namely by a model of
the temporal variation of the spatial means only. In quantifying the
uncertainty about the target parameter, two stochastic processes are
accounted for, the random selection of the sampling locations and
the stochastic space–time process.

In this paper we focus on estimation of the temporal trend of the
spatial mean defined as a model parameter (regression coefficient)
under the hybrid approach. We will demonstrate the hybrid approach
with a case study on acidification and eutrophication of forest soils.
The results obtained with the hybrid approach will be compared
with the results obtained with the design-based approach as reported
by Brus and de Gruijter (2011). We will discuss the advantages of the
hybrid sampling approach over the fully model-based approach. We
will argue that if the monitoring data are yet to be collected and inter-
est is in global target quantities such as the temporal trend of spatial
means, then the hybrid sampling approach can be advantageous be-
cause a full space–time model need not be identified. Especially
with sparse data the calibration of such a model can be challenging.

2. Theory

2.1. Time series model for spatial means

The hybrid sampling approach is based on the publication of Jones
(1980) who developed a general framework for estimating the popu-
lation means at multiple sampling times under the time series
approach, see also Binder and Hidiroglou (1988), p. 201 for an excel-
lent review. In this approach the population means are modeled as
random variables, not as fixed population parameters as in the
design-based approach. Besides model errors, sampling errors in the
estimated population means are accounted for in the statistical infer-
ence, obtained by design-based inference from probability samples.
We therefore refer to this approach as the hybrid, design-based and
model-based sampling approach.

In this hybrid approach amodel is postulated for the temporal var-
iation of the spatial mean, total or fraction. As applications to these
parameters are completely similar, we confine our description of
the approach further to the mean. The spatial mean of the target var-
iable at time tj; �Y tj

� �
, is defined as:

�Y tj
� �

¼ 1
∥A∥ ∫s�AY s; tj

� �
ds ð1Þ

In this study we adopt a linear mixed model for the space–time
process ξ:

�Y tj
� �

¼
Xq
u¼1

βudu tj
� �

þ η tj
� �

ð2Þ

with du(tj) the uth predictor at time tj (j=1⋯r), βu the regression co-
efficient for this predictor, and η(tj) the model residual of the spatial
mean at time tj, also referred to as the model error or the process
error. The predictors can be a constant with value 1 (for the inter-
cept), the time t (see hereafter), or an explanatory variable related
to the variable of interest.

In practice the spatial means are unknown, and in the hybrid ap-
proach these means are estimated from a probability sample, for in-
stance by the Horvitz–Thompson estimator:

�̂Y tj
� �

¼ 1
∥A∥

Xn tjð Þ

l¼1

Yl tj
� �
πl

ð3Þ

with n(tj) the number of sampling locations at time tj, and πl the in-
clusion density of sampling location l. We consider the situation

where we can have several ‘elementary’ estimates of the spatial
mean at a given time tj. An elementary estimate is an estimate from
one panel, i.e. from one set of locations observed at the same set of
times (Brus and de Gruijter, 2011).

The sampling introduces an additional error component in the
model for the ith elementary estimate of the spatial mean at time
tj; �̂Y i tj

� �
:

�̂Y i tj
� �

¼
Xq
u¼1

βudu tj
� �

þ η tj
� �

þ �i tj
� �

ð4Þ

with ϵi(tj) the sampling error of the ith elementary estimate of the
spatial mean at time tj. If we take in Eq. (4) d1(tj)=1 and d2(tj)= tj
for j=1⋯r, the linear mixed model becomes:

�̂Y i tj
� �

¼ β1 þ β2⋅tj þ η tj
� �

þ εi tj
� �

ð5Þ

where β2 is the model parameter describing the linear temporal trend
of the spatial mean. Note that if we take x1(tj)=1 and x2(tj)= I, a 0/1
indicator indicating whether a sampling round takes place before or
after some event, the model describes a step-trend, which might be
more relevant in effect-monitoring. In matrix notation Eq. (5) be-
comes

�̂Y ¼ Dβþ Xηþ � ð6Þϵ

withD the L×2matrix with 1's in first column and the sampling times
t1⋯ tr in the second column (L is the total number of elementary esti-
mates: L ¼ ∑j ltj), andX the L×r matrix with 0's and 1's selecting the
appropriate elements from η. We extend the model with the follow-
ing probability model for the errors η and ϵ:

η
�

� �
eN 0

0

� �
;

Cξ 0
0 Cp

� �� 	
ϵ

The model errors η have zero mean and an r×r covariance matrix
Cξ. The sampling errors have zero mean and an L×L covariance ma-
trix Cp. Subscript p refers to the sampling design used to select the lo-
cations. The covariances of the model error η and sampling error ϵ
equal zero, as they originate from independent stochastic processes.
The overall covariance matrix of the estimated spatial means there-
fore equals

Cξp ¼ XCξX
′ þ Cp ð7Þ

2.2. Estimation of regression coefficients with known covariance matrix
Cξp

With known covariance matrix Cξp,the regression coefficients can
be estimated by Generalized Least Squares (GLS):

β̂ ¼ D′C−1
ξp D

� �−1
D′C−1

ξp Ŷ ð8Þ

This GLS estimator is equal to the maximum likelihood estimator
given the matrix Cξp (Diggle and Ribeiro, 2007).

Variance of estimated regression coefficients. The covariance matrix
of the estimated regression coefficients can be obtained by

Var β̂
� �

¼ D′C−1
ξp D

� �−1
ð9Þ

The variance of an estimated regression coefficient can be decom-
posed as follows:

Var β̂
� �

¼ Varξ Ep β̂
� �

jξ0
n o

þ Eξ Varp β̂
� �

jξ0
n o

ð10Þ
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