Journal of Network and Computer Applications 34 (2011) 1035-1042

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Contents lists available at ScienceDirect

NETWORK&
COMPUTER
APPLICATIONS

Optimization of sub-query processing in distributed data integration systems

Gang Chen, Yongwei Wu*, Jia Liu, Guangwen Yang, Weimin Zheng

Department of Computer Science and Technology, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China

ARTICLE INFO

ABSTRACT

Article history:

Received 28 October 2009
Received in revised form

21 April 2010

Accepted 7 June 2010
Available online 15 June 2010

Keywords:

Cloud computing
Grid computing
Data integration
Query

Data flow

Data integration system (DIS) is becoming paramount when Cloud/Grid applications need to integrate
and analyze data from geographically distributed data sources. DIS gathers data from multiple remote
sources, integrates and analyzes the data to obtain a query result. As Clouds/Grids are distributed over
wide-area networks, communication cost usually dominates overall query response time. Therefore we
can expect that query performance can be improved by minimizing communication cost.

In our method, DIS uses a data flow style query execution model. Each query plan is mapped to a
group of pEngines, each of which is a program corresponding to a particular operator. Thus, multiple
sub-queries from concurrent queries are able to share pEngines. We reconstruct these sub-queries to
exploit overlapping data among them. As a result, all the sub-queries can obtain their results, and
overall communication overhead can be reduced. Experimental results show that, when DIS runs a
group of parameterized queries, our reconstructing algorithm can reduce the average query completion
time by 32-48%; when DIS runs a group of non-parameterized queries, the average query completion

time of queries can be reduced by 25-35%.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

As cloud and grid computing is becoming more and more
popular, increasing number of applications needs to access and
process data from multiple distributed sources. For example, a
bioinformatics application needs to query autonomous databases
across the world to access different types of proteins and protein-
protein interaction information located at different storage
clouds.

Data integration in Clouds/Grids is a promising solution for
combining and analyzing data from different stores. Several
projects (e.g., OGSA-DQP Lynden et al., 2009; CoDIMS-G Fontes
et al.,, 2004; and GridDB-Lite Narayanan et al., 2003) have been
developed to study data integration in distributed environments.
For example, OGSA-DQP (Lynden et al., 2009) is a service-
oriented, distributed query processor, which provides effective
declarative support for service orchestration. It is based on an
infrastructure consisting of distributed services for efficient
evaluation of distributed queries over OGSA-DAI wrapped data
sources and analysis resources available as services.

Queries to data integration systems are generally formulated
in virtual schemas. Given a user query, a data integration system

* Corresponding author. Tel.: +86 10 62796341.
E-mail addresses: c-g05@mails.tsinghua.edu.cn (G. Chen),
wuyw@tsinghua.edu.cn (Y. Wu), liu-jia04@mails.tsinghua.edu.cn (J. Liu),
ygw@tsinghua.edu.cn (G. Yang), zwm-dcs@tsinghua.edu.cn (W. Zheng).

1084-8045/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jnca.2010.06.007

typically processes the query by translating it into a query plan
and evaluating the query plan accordingly. A query plan consists
of a set of sub-queries formulated over the data sources and
operators specifying how to combine results of the sub-queries to
answer the user query. As Clouds/Grids are generally built over
wide-area networks, high communication cost is the main reason
of leading to slow query response time. Therefore, query
performance can be improved by minimizing communication
cost. In this paper, our objective is to reduce communication
overhead and therefore improve query performance, through
optimizing sub-query processing.

We optimize sub-query processing by exploiting data sharing
opportunities among sub-queries. IGNITE is a method proposed in
Lee et al. (2007) to detect data sharing opportunities across
concurrent distributed queries. By combining multiple similar
data requests issued to the same data source, and further to a
common data request, IGNITE can reduce communication over-
head, thereby increase system throughput. However, IGNITE does
not utilize parallel data transmission so that it does not always
improve query performance. Our approach proposed here
enhances IGNITE by addressing its drawbacks so that query
performance in distributed systems can be further improved.

Our data integration system employs an operator-centric data
flow execution model, also proposed in Harizopoulos et al. (2005).
Each operator corresponds to a pEngine, which has local threads
for data processing and data dispatching. Queries are processed
by routing data through pEngines. All the pEngines work in
parallel, thus they can fully utilize intra-query parallelism. Based


www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2010.06.007
mailto:c-g05H@mails.tsinghua.edu.cn
mailto:wuyw@tsinghua.edu.cn
mailto:liu-jia04H@mails.tsinghua.edu.cn
mailto:ygw@tsinghua.edu.cn
mailto:zwm-dcs@tsinghua.edu.cn
dx.doi.org/10.1016/j.jnca.2010.06.007

1036 G. Chen et al. / Journal of Network and Computer Applications 34 (2011) 1035-1042

on such an operator-centric data flow execution model, all similar
query plans are allocated to the same group of p Engines.
Therefore sub-queries from different queries are grouped in a
common place for processing to enable data sharing across the
sub-queries.

In the pEngine for processing sub-queries, a query reconstruction
mechanism with a Merge-Partition (MP) reconstruction algorithm is
developed. The query reconstruction mechanism can construct a set
of new queries to eliminate data redundancy among the sub-queries
being processed by the pEngine. All the sub-query answers can be
obtained by evaluating the new queries and therefore the required
communication overhead can be reduced.

The rest of the paper is organized as follows. Section 2 presents
related work. Section 3 describes the execution model of our DIS.
Section 4 proposes the Merge-Partition (MP) query reconstruction
algorithm used in our DIS. Section 5 discusses the experiments
that we conducted to evaluate our solution. Section 6 concludes
the paper.

2. Related work

IGNITE system proposed in Lee et al. (2007) was developed
based on the PostgreSQL database, and is a work mostly related to
the work presented in this paper. IGNITE decouples the source
wrappers from the execution engine (adopted from the Post-
greSQL database), and enables the execution engine to send sub-
queries to same source, which therefore makes data sharing
across sub-queries possible. Meanwhile, IGNITE employs the
iterator model proposed in Graefe (1993) so that sub-queries
may have delay opportunities — a sub-query can wait for other
similar requests. Because of this, IGNITE develops a Start-Fetch
wrapper with Request Window mechanism. The wrapper com-
bines a group of similar sub-queries to a common sub-query and
only sends the common sub-query to the data source, so that
redundant answers among sub-queries can be eliminated.

There are two major differences between our method and
IGNITE. First, our method reconstructs original sub-queries to
alternative sub-queries, which may not eliminate all redundant
answers, but never introduce unnecessary data. IGNITE combines
a group of sub-queries into a single common sub-query to
eliminate redundant answers; however by doing so it may
introduce unnecessary data and in some cases may increase the
size of query answers. IGNITE increases communication traffic in
two ways: (1) it requires not only output attributes, but also
predicate attributes to identify sub-query answers; (2) all tuples
including common tuples must contain all required attributes for
all sub-queries. The second major difference between our method
and IGNITE is that if the source wrapper manages multiple work
threads, our method can take advantage of parallel sub-query
processing, whereas IGNITE cannot.

A significant amount of work on data integration (i.e. Ives,
2002; Halevy et al., 2006; Deshpande et al., 2007; Haas et al.,
1997) has been conducted. Several projects (e.g., OGSA-DQP
(Lynden et al., 2009); CoDIMS-G (Fontes et al., 2004); and GridDB-
Lite (Narayanan et al., 2003)) particularly focus on data integration
in Clouds/Grids. With a service-oriented architecture, OGSA-DQP
supports pipeline and partition parallelism for efficient evaluation
of distributed queries. Different from our method, OGSA-DQP uses
iterator model and relevant research on OGSA-DQP often focuses
on improving the performance of a single query. Similarly,
CoDIMS-G and GridDB-Lite also focus on improving the perfor-
mance of a single query.

Many efforts have been made on exploiting data sharing in
data integration area as well as database area (e.g., Dalvi et al.,
2001; Harizopoulos et al., 2005; Lee et al., 2007; Goldstein and

Larson 2001; Sacco and Schkolnick, 1986), including: (1) Multiple-
query optimization (MQO) techniques (e.g., Dalvi et al., 2001),
which exploit data sharing by identifying common sub-expres-
sions in query execution plans during optimization; (2) buffer
pool management (e.g., Sacco and Schkolnick, 1986), which
typically reuses disk pages in a buffer pool; (3) caching and view
materialization (e.g., Kossmann, 2000; Goldstein and Larson,
2001), which typically reuse pre-stored data in cache or
materialized view.

There are also techniques proposed in the distributed data
processing area, aiming to improve query efficiency (e.g. parallel
query processing techniques proposed in Gounaris (2005) and
adaptive query processing techniques proposed in Deshpande
et al. (2007) and Gounaris (2005)). The technique proposed in
Kossmann (2000) is one of them, which achieves the objective by
decreasing communication cost. For example, semi-joins are
proposed in Kossmann (2000) to reduce data transition while
processing joins between tables stored at different sites, and row
blocking is used to reduce the number of communication
occurrences by delivering tuples in batches.

3. Query engine

In this section, we discuss the execution engine of our DIS. The
engine employs a data flow style execution model (Section 3.1),
based on it, sub-queries can be gathered to a common place for
evaluation through source wrappers (Section 3.2). We also discuss
in Section 3.3, in detail, why is required to have a delay for each
request in order to better utilize data sharing.

3.1. Data flow execution model

As previously discussed, our DIS employs a data flow
style execution model, also referred to as operator-centric (one-
operator, many-queries) model in Qpipe (Harizopoulos et al.,
2005). In this model, each operator uses an independent pEngine.
UEngines serve requests from submitted queries. Each request
specifies input and output data buffers, and operator arguments.
By linking a pEngine’s output to another’s input, producer—
consumer relationships can be established among pEngines.
Queries can then be evaluated by pushing data through pEngines.

Fig. 1 describes the runtime model of our data flow execution.
In this model, there are four kinds of elements: Query Plans,
requests, dispatcher and pEngines.

e Query Plans: a Query Plan consists of a set of sub-queries
formulated over the data sources and operators specifying how
to combine results of the sub-queries to answer the user query.

e requests: are generated according to the Query Plans. They can
be considered a group of operations need to be performed by
HEngines.

e dispatcher: is a component which is responsible for sending the
requests to proper LEngines.

e lEngines: Each round box in Fig. 1 represents a pEngine and
the text in the box indicates its corresponding operator. In
Fig. 1, pEngines labeled with “wrapper” or “WSP” is used to
process sub-queries or invoke web services, respectively.
1Engines labeled with “Sort”, “Selection” and ‘“Hashjoin” are
used to process relational operators “Sort”, “Selection” and
“Hashjoin”, respectively.

The process of evaluating a query plan is as follows. After the
arrival of the query plan, the dispatcher creates as many requests
as the nodes in the query plan and dispatches these requests to
their corresponding pEngines. Then, the pEngines work in parallel



Download English Version:

https://daneshyari.com/en/article/457422

Download Persian Version:

hitps://daneshyari.com/article/457422

Daneshyari.com


https://daneshyari.com/en/article/457422
https://daneshyari.com/article/457422
https://daneshyari.com

