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Knowledge of soil spatial variability is important in natural resource management, interpolation and soil
sampling design, but requires a considerable amount of geo-referenced data. In this study, mid-infrared
spectroscopy in combination with spatial analyses tools is being proposed to facilitate landscape evaluation
and monitoring. Mid-infrared spectroscopy (MIRS) and geostatistics were integrated for evaluating soil
spatial structures of three land settlement schemes in Zimbabwe (i.e. communal area, old resettlement and
new resettlement; on loamy-sand, sandy-loam and clay soils, respectively). A nested non-aligned design
with hierarchical grids of 750, 150 and 30 m resulted in 432 sampling points across all three villages (730–
1360 ha). At each point, a composite topsoil sample was taken and analyzed by MIRS. Conventional
laboratory analyses on 25–38% of the samples were used for the prediction of concentration values on the
remaining samples through the application of MIRS–partial least squares regression models. These models
were successful (R2≥0.89) for sand, clay, pH, total C and N, exchangeable Ca, Mg and effective CEC; but not
for silt, available P and exchangeable K and Al (R2≤0.82). Minimum sample sizes required to accurately
estimate the mean of each soil property in each village were calculated. With regard to locations, fewer
samples were needed in the new resettlement area than in the other two areas (e.g. 66 versus 133–473
samples for estimating soil C at 10% error, respectively); regarding parameters, less samples were needed for
estimating pH and sand (i.e. 3–52 versus 27–504 samples for the remaining properties, at same error
margin). Spatial analyses of soil properties in each village were assessed by constructing standardized
isotropic semivariograms, which were usually well described by spherical models. Spatial autocorrelation of
most variables was displayed over ranges of 250–695 m. Nugget-to-sill ratios showed that, in general, spatial
dependence of soil properties was: new resettlementNold resettlementNcommunal area; which was
potentially attributed to both intrinsic (e.g. texture) and extrinsic (e.g. management) factors. As a new
approach, geostatistical analysis was performed using MIRS data directly, after principal component
analyses, where the first three components explained 70% of the overall variability. Semivariograms based on
these components showed that spatial dependence per village was similar to overall dependence identified
from individual soil properties in each area. In fact, the first component (explaining 49% of variation) related
well with all soil properties of reference samples (absolute correlation values of 0.55–0.96). This showed that
MIRS data could be directly linked to geostatistics for a broad and quick evaluation of soil spatial variability. It
is concluded that integrating MIRS with geostatistical analyses is a cost-effective promising approach, i.e. for
soil fertility and carbon sequestration assessments, mapping and monitoring at landscape level.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Soil properties are inherently variable in nature mainly due to
pedogenetical factors (e.g. parental material, vegetation, climate), but
heterogeneity can be also induced by farmers' management (Dercon
et al., 2003; Samake et al., 2005; Yemefack et al., 2005; Giller et al.,
2006; Wei et al., 2008). Soil spatial variability can occur over multiple
spatial scales, ranging from micro-level (millimeters), to plot level
(meters), up to the landscape (kilometers) (Garten et al., 2007). Thus,
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soil spatial variability is a function of the different driving factors and
spatial scale (in terms of size and resolution), but also of the specific
soil property (or process) under evaluation and the spatial domain
(location), among others factors (Lin et al., 2005). Recognizing spatial
patterns in soils is important as this knowledge can be used for
enhancing natural resource management (e.g. Liu et al., 2004;
Borůvka et al., 2007; Wang et al., 2009), predicting soil properties at
unsampled locations (e.g. Wei et al., 2008; Liu et al., 2009) and
improving sampling designs in future agro-ecological studies (e.g. Yan
and Cai, 2008; Rossi et al., 2009). In fact, the identification of spatial
patterns is the first step to understanding processes in natural and/or
managed systems, which are usually characterized by spatial
structures due to spatial autocorrelation: i.e. where closer observa-
tions are more likely to be similar than by random chance (Fortin et
al., 2002). Conventional statistical analyses are not appropriate to
identify spatial patterns, as these analyses require the assumption of
independence among samples, which is violated when autocorrelated
(spatially dependent) data are present (Fortin et al., 2002; Liebhold
and Gurevitch, 2002). Thus, since 1950s, alternative methods, so-
called spatial statistics, have been developed for dealing with spatial
autocorrelation (Fortin et al., 2002). Today several methods for spatial
analyses exist (e.g. Geostatistics, Mantel tests, Moran's I, Fractal
analyses), while the reasons for the different studies carried out to
date on spatial assessments are also diverse (e.g. hypotheses testing,
spatial estimation, uncertainty assessment, stochastic simulation,
modeling) (Goovaerts, 1999; Liebhold and Gurevitch, 2002). Howev-
er, a common characteristic is that all methods intent to capture and
quantify in one way or another underlying spatial patterns of a
specific spatial domain (Liebhold and Gurevitch, 2002; Olea, 2006).

Geostatistics is one of the most used and powerful approaches for
evaluating spatial variability of natural resources such as soils (Sauer
et al., 2006). However, construction of stable semivariograms (the
main tool on which geostatistics is based) requires considerable
amount of geo-referenced data (Davidson and Csillag, 2003). Infrared
spectroscopy (IRS) has been suggested as a viable option to facilitate
access to the extensive soil data required (Shepherd andWalsh, 2007;
Cécillon et al., 2009). IRS is able to detect the different molecular
vibrations due to the stretching and binding of the different
compounds of a sample when illuminated by an infrared beam in
the near, NIRS (0.7–2.5 μm), or mid, MIRS (2.5–25 μm) ranges. The
result of the measurements is summarized in one spectrum (e.g.
wavelength versus absorbance), which is later related by multivariate
calibration to known concentration values of the properties of interest
(e.g. carbon content, texture) from reference samples. Thus, a
mathematical model is created and used later for the prediction of
concentration values of these properties in other samples from which
IRS data is also available (Conzen, 2003). IRS measurements are
therefore not destructive, take few minutes, and one spectra can be
related to multiple physical, chemical and biological soil properties
(Janik et al., 1998; McBratney et al., 2006). Hence the technique is
more rapid and cheaper than conventional laboratory analysis,
especially when a large number of samples must be analyzed
(Viscarra-Rossel et al., 2006). IRS has the additional advantage that
spectral information can be used as an integrative measure of soil
quality, and therefore employed as a screening tool of soil conditions
(Shepherd and Walsh, 2007). The few existing initiatives in this
regard are, however, limited to NIRS. For example, a visible-NIRS

(VNIRS) soil fertility index based on ten common soil properties has
been developed and applied in Madagascar (Vågen et al., 2006);
ordinal logistic regression and classification trees were used to
discriminate soil ecological conditions by using biogeochemical data
and VNIRS in the USA (Cohen et al., 2006); and in Kenya, Awiti et al.
(2008) developed an odds logistic model based on principal
components from NIRS for soil fertility classification. Nevertheless,
despite its multiple applications, to date IRS has not been widely used,
especially for wide-scale purposes and in developing countries
(Shepherd and Walsh, 2007).

African regions are usually characterized by food insecurity and
poverty, which have been extensively attributed to low soil fertility
and soil mining (Sanchez and Leakey, 1997; Vitousek et al., 2009).
Therefore, to boost land productivity in the continent, there is an
increasing need to develop and apply reliable indicators of land
quality at different spatial scales (Cobo et al., 2010). In fact, Shepherd
and Walsh (2007) proposed that the successful “combination of
infrared spectroscopy and geographic positioning systems will
provide one of the most powerful modern tools for agricultural and
environmental monitoring and analysis” in the next decade. The
present study aims to contribute to this goal, and follows up a study
from Cobo et al. (2009), in which three villages as typical cases of
three settlement schemes in north-east Zimbabwe (i.e. communal
area, old resettlement and new resettlement) were evaluated to
determine specific cropping strategies, soil fertility investments and
land management practices at each site. The assessment, however,
was done at plot and farm level, and did not take into account spatial
structures of soil properties. Hence, the same three villages of Cobo et
al. (2009) were systematically sampled, soils characterized by MIRS,
and data subsequently analyzed using conventional statistics and
geostatistics tools. The main objectives of this study were: i) to
evaluate advantages and disadvantages of using MIRS and geostatis-
tics in the assessment of spatial variability of soils, ii) to test if MIRS
can be directly integrated with geostatistics for landscape analyses,
and iii) to present recommendations for guiding future sampling
designs.

2. Materials and methods

2.1. Description of study sites

The study sites consisted of three villages, selected as typical cases
of three small-holder settlement schemes, in the districts of Bindura
and Shamva, north-east Zimbabwe (Table 1). The first village,
Kanyera, is located in a communal area, covers 730 ha, and is mainly
characterized with loamy-sand soils of low fertility. The second
village, Chomutomora, is located in an old resettlement area (from
1987), covers 780 ha and mostly presents sandy-loam soils of low
quality. The third village, Hereford farm, is located in a new
resettlement area (from 2002), covers 1360 ha and is predominantly
characterized by clay soils of relatively higher fertility. All villages are
located in natural region II, which covers a region with altitudes of
1000 to 1800 m a.s.l. and unimodal rainfall (April to October) with
750–1000 mm per annum (FAO, 2006). Maize (Zea maiz L.) is the
main crop planted in the three areas, and farmers have free access to
communal grazing areas andwoodlands. A full description of the sites'
selection and characteristics is provided in Cobo et al. (2009).

Table 1
Main characteristics of the villages under study.

Village name Settlement type Settlement time Location (district, ward) Dominant soil typea Mean soil textural class Village area (ha)

Kanyera Communal area 1948 Shamva, 6 Chromic Luvisols Loamy sand 730
Chomutomora Old resettlement 1987 Shamva, 15 Chromic Luvisols Sandy loam 780
Hereford Farm New resettlement 2002 Bindura, 8 Rhodic Ferrasols Clay 1360

a According to FAO soil classification.
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