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A popular method for fitting solid-phase activity coefficient models in the thermodynamics of ternary ion-
exchangehas been theRationalmethod. The standard statistical tests used to comparemodel functional forms are
undefined in the Rational method because all of the dependent variables in the regression (Gibbs Energies) take
the value of zero. The present study develops the mathematically equivalent but statistically improved approach
of directlyfittingVanselowselectivity coefficientswithmultiresponse regression. In thismultiresponse approach,
the Gibbs Energy at equilibrium is set to zero, a selected model is substituted into the equilibrium expression in
place of the solid-phase activity coefficients, and the activity coefficient model parameters are optimized
numerically until the predicted Vanselow selectivity coefficients are as close as possible to the measured values.
ThisMultiresponsemethod requires theuse of restricted regression to ensure that the equilibriumconstants obey
the Triangle Rule. An advantage of the Multiresponse method is that it allows for calculation of the coefficient of
determination (R2) and R2adj, which are statistics that can be used to compare solid-phase activity coefficient
models. The example solid-phase activity coefficient models compared in this study are the Regular Solution
model and a Cox mixture model. When applied to NH4

+–Ca2+–K+ exchange on vermiculite, the R2adj statistics
were found to be 0.944 for the Cox mixture model and 0.826 for the Regular Solution model. These results from
the Multiresponse method indicate that the Cox mixture model is superior for this dataset.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The equilibrium condition for an ion-exchange reaction involving a
solid exchanger and a liquid is described by the following equilibrium
expression (Sposito, 1981):

Keq =
Iλið ÞZj Nj fj

� �Zi
Ni fið ÞZj Jλj

� �Zi : ð1Þ

Here Keq is the equilibrium constant, I and J are the concentrations of
the two exchangeable ions in the liquid phase, Ni and Nj are the mole
fractions of ions I and J in the solid-phase, Zi and Zj are the charges on the
ions I and J, λi is the liquid-phase activity coefficient, and fi are the solid-
phase activity coefficients. The equilibrium constant depends on the
choice of standard state composition, which is the compositionwhere a
non-ideal exchanger has an activity coefficient of one (Denbigh, 1963).
Rather than theKeq, ion-exchange equilibrium is frequently expressed in
terms of the Vanselow selectivity coefficient (Kv; Vanselow, 1932)
described by Eq. (2).

Kv =
Iλið ÞZj Nj

� �Zi
Nið ÞZj Jλjð ÞZi : ð2Þ

Kv can be calculated at individual solid-phase compositions
without knowing the solid-phase activity coefficients. The difference
between Kv and Keq is that Kv changes with exchanger composition,
unless the exchanger is an ideal exchanger (Sposito and Mattigod,
1979). The Kv can be substituted into Eq. (1) and then rearranged to
arrive at Eqs. (3a) and (3b).

Kv = Keq f
zj
i = f

Zi
j ð3aÞ

or

0 = lnKv − lnKeq − Zj ln fi + Zi ln f : ð3bÞ

Natural waters and waste streams typically have more than two
exchangeable ions. There are three reactions and three equilibrium
constants in ternary ion-exchange. The equilibrium constants for
these three reactions are interrelated through the Triangle Rule given
by Eq. (4) (Lowen et al., 1951; Helfferich, 1962). Similar equations can
be written for higher order exchange.

Zk lnKeq i= j + Zi lnKeq j=k + Zj lnKeq k= j = 0: ð4Þ

A number of models are available for estimating both the solid and
aqueous-phase activity coefficients (Truesdell 1966; Smith and Wood-
burn, 1978; Chu and Sposito, 1981; Zemaitis et al., 1986; Pabalan, 1994;
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Bond, 1995; Snyder and Cavallaro 1997). A large amount of data is
available to calculate the aqueous-phase activity coefficients for most
ions of interest under themost common concentration ranges (Zemaitis
et al., 1986). At the present time, the solid-phase activity coefficient
models are less advanced than the aqueous-phase models. For solving
solid-phase activity coefficients, a candidate model is typically sub-
stituted for the fi in Eqs. (1), (3a) or (3b), and the candidate model
parameters are determined empirically.Many studies have attempted to
predict ternary ion-exchange equilibria by assuming that the activity
coefficients determined from binary systems are valid in ternary
systems (Grant and Sparks, 1989; Bond and Verberg, 1997; Vo and
Shallcross, 2005). Themethod presented in the current study allows for
avoidance of this assumption when ternary data is available.

A popular method for empirically determining the activity
coefficient model parameters in multi-ion systems is the Rational
method of Grant and Sparks (1989). Grant and Sparks (1989) noted
that all three exchange reactions (as shown in Eq. (3b)) in ternary ion-
exchange can be squared and then summed together to obtain the
following relation:

0 =
Xn−1

i=1

X
n z j z i

ln kv; i= j− lnKeq; i= j−zi ln fj + zj ln fi
� �2

: ð5Þ

The zero on the left hand side of Eq. (5) is the total Excess Gibbs
Energy of the system that is not accounted for by the solid and liquid-
phase activity coefficients. Per Grant and Sparks (1989), Eq. (5) is
solved by substituting in the numerical value of the Keq, the measured
Kv values, as well as a candidate model for each solid-phase activity
coefficient. The empirically determined parameters within the solid-
phase activity coefficient models are established by varying them
iteratively (Kunz, 1957; Vaughan, 2002) until the right side of Eq. (5)
is as close as possible to zero (Grant and Sparks, 1989). This method is
called the Rational method because it effectively sets the ratio of the
activity coefficients equal to the ratio of the Vanselow selectivity
coefficient to the equilibrium constant.

The best solid-phase activity model is still being debated, and may
not be the same for all systems. Several studies have compared solid-
phase activity coefficient models (Grant and Sparks, 1989; Vamos and
Hass, 1994; Bond and Verberg, 1997). One of the most effective
statistics for comparingmodels is the coefficient of determination (R2)
which provides the proportion of the data variation that is explained
by the model (Kleinbaum and Kupper, 1978). The formula for
calculating R2 is (Marquardt and Snee, 1974):

R2 = 1−

Pn
i=1

Yi − Ŷ i

Pn
i=1

Yi − Y
P

i

0
BBB@

1
CCCA ð6Þ

where Yi is the ith measured result, Y î is the result predicted by the
model for that composition, and Y

–
i is the mean measured result. The

reader should note that Eq. (6) is slightly different than the equation
commonly reported for R2 by introductory textbooks. Marquardt and
Snee (1974) explain that Eq. (6) is the appropriate equation for mixture
applications where the independent variables must sum to one.

A limitation with using R2 is that the statistic can always be
increased by adding terms to the fitted model, even unjustified terms
(Rao, 1971). Consequently, the R2adj statistic (Eq. (7); Marquardt and
Snee, 1974) is often used for comparing models with differing
numbers of empirically determined parameters because this statistic
is lowered when unjustified terms are included in the model.

R2
adj = 1−

Pn
i=1

Yi −Ŷ i = n − p

Pn
i=1

Yi − Y
P

i = n − 1

0
BBB@

1
CCCA: ð7Þ

In Eq. (7), n = the number of data points regressed and p = the
number of unconstrained fitted parameters.

There is a limitation to fitting solid-phase activity coefficient
models using the Rational method, evident from Eqs. (6) and (7). The
R2 and R2adj statistics are undefined when performing the Rational
method because the denominators of Eqs. (6) and (7) would be zero,
and it is not possible to divide by zero. Theywould be zero because the
true Excess Gibbs Energy at equilibrium that is unaccounted for by the
activity coefficients is always zero theoretically (Denbigh, 1963).
Hence, R2 and R2adj cannot be directly used to compare different solid-
phase activity coefficient models when the Rational method is
employed.

This limitation will be mitigated in a method presented here to fit
solid-phase activity coefficient models to ternary ion-exchange data.
This method involves varying the empirically determined parameters
in the activity coefficient model until the minimum difference
between the measured and predicted ln(Kv) values is obtained.
Thus, in the present method, the Vanselow selectivity coefficients are
regressed rather than the Gibbs Energy. Each of the following sections
describes an aspect of this revised thermodynamic model fitting
procedure, here denoted as the Multiresponse method.

2. Multiresponse fitting methodology

2.1. Test data

An example of data fitting was undertaken to demonstrate the
Multiresponse method described in the following sub-sections. The
ternary ion-exchange dataset of Evangelou and Lumbarnraja (2002),
which has data for NH4

+–K+–Ca2+ exchange on the clay mineral
vermiculite, was used as the example dataset. The Kv for each data
point was calculated using the solid and aqueous-phase concentra-
tions they provided. The aqueous-phase activity coefficients were
calculated with the Extended Bromely model (Zemaitis et al., 1986),
which has been used previously in ion-exchange thermodynamics
studies (Ioannidis et al., 2000). The aqueous-phase concentrations
that Evangelou and Lumbarnraja (2002) reported in molarity units
were assumed to be the same in the molality units used by the
Extended Bromley model. This assumption was verified, to the third
significant digit, using water-contents estimated by the method of
Reynolds and Carter (2008). The aqueous-phase activity coefficients
were found to be effectively independent of composition over the
narrow composition range reported by Evangelou and Lumbarnraja
(2002). These aqueous-phase activity coefficient values were calcu-
lated to be NH4

+=0.91, K+=0.91, and Ca2+=0.68. The ln(Kv) data
thus calculated are shown in Table 1.

Table 1
Vanselow selectivity coefficients calculated for Evangelou and Lumbarnraja (2002)
data.

Sample number ln(Kv NH4/Ca)
(kJ/mol)

ln(Kv Ca/K)
(kJ/mol)

ln(Kv K/NH4)
(kJ/mol)

1 13.44 −6.55 −3.44
2 11.33 −6.52 −2.41
3 8.04 −6.59 −0.73
4 8.09 −6.49 −0.80
5 7.52 −6.23 −0.64
6 7.19 −5.95 −0.62
7 5.69 −4.91 −0.39
8 5.53 −4.91 −0.31
9 5.58 −5.23 −0.17
10 6.04 −5.56 −0.24
11 6.33 −5.83 −0.25
12 6.71 −6.25 −0.23
Mean 7.62 −5.92 −0.85
Standard deviation 2.44 0.63 1.02
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