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Abstract

Recent analyses of field data suggest that saturated hydraulic conductivity, K, distributions of rocks and soils are multifractal in
nature. Most previous attempts at generating multifractal K fields for flow and transport simulations have focused on stochastic
approaches. Geometrical multifractals, in contrast, are grid-based and thus better able to simulate distinct facies or horizons. We
present a theoretical framework for generating two-dimensional geometrical multifractal K fields. Construction of monofractal
Sierpinski carpets using the homogenous and heterogeneous algorithms is recalled. Averaging multiple, non-spatially randomized,
heterogeneous Sierpinski carpet generators yields a new generator with variable mass fractions determined by the truncated
binomial probability distribution. Repeated application of this generator onto itself results in a multiplicative cascade of mass
fractions or multifractal. The generalized moments, Mi(q), of these structures scale as Mi(q)= (1/b

i)(q−1)Dq, where b is the scale
factor, i is the iteration level and Dq is the q−th order generalized dimension, with q being any integer between −∞ and ∞. This
theoretical approach is applied to the problem of aquifer heterogeneity by equating the mass fractions with K. An approximate
analytical expression is derived for the effective hydraulic conductivity, Keff, of multifractal K fields, and Keff is shown to increase
as a function of increasing length scale in power law fashion, with an exponent determined by Dq→∞. Numerical simulations of
flow in b=3, Dq→∞=1.878 and i=1 though 5 multifractal K fields produced similar increases in Keff with increasing length scale.
Extension of this approach to three dimensions appears to be relatively straightforward.
© 2006 Elsevier B.V. All rights reserved.

1. Introduction

How to describe, predict and simulate heterogeneity
are pervasive issues in the fields of hydrogeology,
petroleum engineering, and soil physics. Heterogene-
ities can occur in chemical and physical properties, both
spatially and temporally. We are concerned with the
spatial variation in physical properties, specifically the

saturated hydraulic conductivity, K, of different geolog-
ical facies or soil horizons. Such variations impact flow
and transport in the subsurface, and thus have practical
significance for the design and operation of pumping
wells for human water use, oil production, and the
spreading of contaminants in polluted soils and aquifers.

Increasingly, fractal-based models are being used to
describe, predict and simulate aquifer heterogeneity (see
for example the recent reviews by Neuman and Di
Federico, 2003; Molz et al., 2004). Fractals are spatial or
temporal patterns that repeat themselves at increasingly
finer (or coarser) scales of resolution (Mandlebrot,
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1982; Gouyet, 1996). The focus of this work is on two-
dimensional spatial patterns constructed from a solid
starting mass by an iterative process of mass removal
and re-scaling.

As a concrete example, consider the Sierpinski carpet
(named after the Polish mathematician Waclaw Sier-
pinski, 1882–1969) in Fig. 1. Construction based on the
homogenous algorithm begins with a solid square of
unit length (the initiator), which is divided into b2

smaller squares of length 1/b, where b=2,3,4… is a scale
factor. At the first iteration level (i=1), n smaller squares
are removed. In Fig. 1, b=3 and n=1. In subsequent
iterations, this generator (Fig. 1A) is scaled down and

applied to the remaining parts. In general, the number of
remaining parts of length 1/bi is given by N(1/bi)= (1/
bi)−D, where D is the mass fractal dimension defined as:

Dulogðb2−nÞ=logðbÞ ð1Þ

For the example in Fig. 1, D=1.892… resulting in N(1/
31)=8 for the first iteration, N(1/32)=64 for the second
iteration and so on; the carpet produced after five
iteration levels is shown in Fig. 1B.

The Sierpinski carpet and its three-dimensional
cousin, the Menger sponge, have a long history of
applications to natural porous media. They have
primarily been used as models for pore spaces (Garrison
et al., 1992, 1993) and fracture networks (Doughty and
Karasaki, 2002) in rocks and soils. The percolation
thresholds of randomized Sierpinski carpets were
investigated by Sukop et al. (2002). In vadose zone
applications, these fractals are often invoked in
physically based derivations of the capillary pressure–
saturation relation (Tyler and Wheatcraft, 1990; Bird et
al., 1996; Perfect, 2005). Bird and Dexter (1997) and
Sukop et al. (2001) studied the drainage characteristics
of randomized Sierpinski carpets using a numerical
invasion percolation algorithm. In an early application
to aquifer heterogeneity, Wheatcraft et al. (1991)
conducted numerical saturated flow and transport
simulations in Sierpinski carpets; the carpets were
used as a spatial model for facies with a bimodal K
distribution.

More recently, detailed analyses of large data sets
have revealed that K distributions of sedimentary rocks
(Liu and Molz, 1997; Boufadel et al., 2000; Tennekoon
et al., 2003) and soils (Giménez et al., 1999) are
multifractal in nature. As will be explained in the next
section, multifractals are characterized by a range of D
values instead of a single fractal dimension, as is the
case for the monofractal Sierpinski carpets discussed
previously. Most attempts at generating multifractal K
fields have concentrated on stochastic approaches
(Boufadel et al., 2000; Tennekoon et al., 2003;
Veneziano and Essiam, 2003). Numerical simulations
of flow and transport in such fields have been reported
by Veneziano and Essiam (2003, 2004). Numerical flow
and transport simulations have also been performed in
quasi-multifractal K fields generated with an algorithm
based on bounded fractional Lévy motion (Painter and
Mahinthakumar, 1999).

Compared to stochastic multifractals and Lévy
motions, geometrical multifractals are grid-based and
thus better able to simulate the spatial variability of K as
a function of distinct geological facies or soil horizons.

Fig. 1. Monofractal Sierpinski carpet with p=8/9 and b=3: (A) i=1
(generator) and (B) i=5. Remaining parts =white, removed
parts=black.
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