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s u m m a r y

Facies delineation is defined as the separation of geological units with distinct intrinsic characteristics
(grain size, hydraulic conductivity, mineralogical composition). A major challenge in this area stems from
the fact that only a few scattered pieces of hydrogeological information are available to delineate geolog-
ical facies. Several methods to delineate facies are available in the literature, ranging from those based
only on existing hard data, to those including secondary data or external knowledge about sedimentolog-
ical patterns. This paper describes a methodology to use kernel regression methods as an effective tool for
facies delineation. The method uses both the spatial and the actual sampled values to produce, for each
individual hard data point, a locally adaptive steering kernel function, self-adjusting the principal direc-
tions of the local anisotropic kernels to the direction of highest local spatial correlation. The method is
shown to outperform the nearest neighbor classification method in a number of synthetic aquifers when-
ever the available number of hard data is small and randomly distributed in space. In the case of exhaus-
tive sampling, the steering kernel regression method converges to the true solution. Simulations ran in a
suite of synthetic examples are used to explore the selection of kernel parameters in typical field settings.
It is shown that, in practice, a rule of thumb can be used to obtain suboptimal results. The performance of
the method is demonstrated to significantly improve when external information regarding facies propor-
tions is incorporated. Remarkably, the method allows for a reasonable reconstruction of the facies con-
nectivity patterns, shown in terms of breakthrough curves performance.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Image reconstruction has a long history in a number of
disciplines such as satellite image mapping, shape recognition in
robotics, face recognition, and license plate reading, among other
uses (Bughin et al., 2008; Daoudi et al., 1999; Yang and Huang,
1994; Lin and Chen, 2008). The topic can be loosely subdivided into
two main groups: (a) The reconstruction of incomplete images
where some of the pixels have no information; and (b) the recon-
struction of noisy images, where some of the pixels display wrong
information and the main problem is detecting and reclassifying
the misclassified pixels.

A good reconstruction work relies heavily on the presence of
data and on an efficient reconstruction algorithm that can either
complete information gaps, or else filter noisy signals. A particular
case of reconstruction appears in subsurface hydrology, where the
information relies on very few points (well logs), so that the initial

available picture for reconstruction is mostly a black signal (mean-
ing no information) with some sparse data scattered throughout
the medium. Reconstruction is, thus, a really difficult and error
prone task.

Many methods for the interpolation of scattered data exist
(Franke, 1982) and some of them have been used for geologic facies
reconstruction (i.e., Ritzi et al., 1994; Guadagnini et al., 2004;
Tartakovsky and Wohlberg, 2004; Wohlberg et al., 2006;
Tartakovsky et al., 2007). In particular, Tartakovsky et al. (2007)
compared the fractional error obtained in two synthetic examples
using three approaches: indicator kriging (IK) (Isaaks and
Srivastava, 1990; Ritzi et al., 1994; Guadagnini et al., 2004), sup-
port Vector Machines (SVMs) (Tartakovsky and Wohlberg, 2004;
Wohlberg et al., 2006) and nearest-neighbor classification (NNC)
(Dixon, 2002). Different sampling densities, ranging from 0.28%
to 3.06%, and random sampling data generated following a 2D
Poisson random process were used for comparison. Here sampling
density refers to the proportion of pixels where hard data is
available (pixels that are univocally classified). Their analysis
indicated that NNC outperformed IK, in terms of proportion of
correctly classified pixels, in both examples, and that SVM slightly
outperformed NNC in one of the examples.
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There exist a number of reconstruction methods available in
different disciplines that to our knowledge have never been used
in geological facies reconstruction. A potential reason for this is
that these methods were devised for the presence of massive data
sets that are never available in hydrogeology. One family of meth-
ods is based on kernel regression functions, widely used in signal
theory for solving different problems such as image denoising,
upscaling, interpolation, and fusion. Such methods have proved
to be efficient for problems such as restoration and enhancement
of noisy and/or incomplete sampled images. Even though regres-
sion methods have been used for reconstruction of images from
extensive data sets, in principle, there is no reason not to use them
when information is sparse. As an example, Takeda et al. (2007)
tested a kernel regression method on an image reconstruction case
in which only 15% of the pixels were informed, obtaining a very
good reconstruction of a 2D image.

Making an analogy between image reconstruction (from irregu-
larly sampled data) and facies delineation (from scattered sam-
pling points), we investigate the performance of a Steering
Kernel Regression (SKR) method for the latter problem. The aim
is to describe a methodology to use kernel regression as an effec-
tive tool for facies delineation, an application involving far less
information available for image delineation from that for what it
was originally developed (reconstruction). In doing this, we inves-
tigate the optimal tuning parameters to be used in the reconstruc-
tion of geological facies and their connectivity patterns.

This paper is structured as follows; Section 2 briefly describes
the fundamental concepts of facies reconstruction. Section 3 pre-
sents the details of the data-adapted kernel regression method.
We test this method with respect to the NNC method in Section 4
by means of four synthetic images, here including the two figures
profusely investigated by Tartakovsky et al. (2007) to allow for per-
formance comparisons. Since the NNC was already shown to out-
perform the IK and the SVM methods in these examples, we
limited the comparison to the NNC method.

2. The concept of facies reconstruction

The term facies is used in geology to differentiate among
geological units on the basis of interpretive or descriptive charac-
teristics, such as sedimentological conditions of formation, miner-
alogical composition, presence of fossils (biofacies), structures, and
grain size (Tarbuck and Lutgens, 2002). In this work, we consider
that each facies is a clear distinctive geology unit, understood in
a descriptive sense. Keeping this in mind, facies reconstruction is
defined as the process of assigning each unsampled point (eventu-
ally also the sampled ones if misclassification errors are admitted)
to one facies. Formally, for any given facies Fk, the reconstruction
problem can be addressed using an indicator function defined as

Iðx; FkÞ ¼
1 x 2 Fk

0 otherwise

�
ð1Þ

where the indicator variable I(x, Fk) is equal to 1 when a particular
point in the domain, x, can be classified as belonging to facies Fk and
zero otherwise. In this work we assume that the available data from
the sampling points are clearly distinctive in order to be unmistak-
ably classified as indicated in (1) without interpretation errors.
From now on, we consider that only two facies are used for geolog-
ical mapping. However, the method can be easily extended to any
finite number of facies by direct superposition.

Several methods have been proposed in the literature to esti-
mate the spatial distribution of the indicator variable I(x, F1). Here
we compile only three of such methods. The first one is indicator
kriging (IK) (Journel, 1983), a method that provides a least-
squares estimate of the probability that x belongs to F1 conditioned
to nearby data. Once a threshold value is given, a distinction

between categories (facies) can be done. The method relies on the
theory of random functions to model the uncertainty of not having
data at unknown locations. It accounts for the inherent spatial cor-
relation of data but typically fails to properly estimate curvilinear
geological bodies. Multiple point geostatistics (e.g., Strebelle,
2000) can overcome most of these problems by largely relying on
an empirical multivariate distribution inferred from training
images, i.e., under the assumption that significant information
about the spatial distribution of facies is known from external
sources (outcrops, modeling of sedimentological processes, . . .);
these information is directly transferred to the final images.

Alternatively, Support Vector Machine (SVM) methods are a set
of popular tools for data mining tasks such as classification, regres-
sion, and novelty detection (Vapnik and Lerner, 1963; Bennett and
Campbell, 2000). SVM takes a training data, i.e., a set of n data
points Ji = J(xi, F1) 2 {�1, 1}, i = 1, . . . , n, and separates them into
two classes by delineating the hyperplane that has the largest dis-
tance to the nearest training data point of any class.

Last, the nearest-neighbor classification (NNC) simply classifies
each point in the domain by finding the nearest (not necessarily in
the Euclidean sense) training point, assigning to the unsampled
location the class corresponding to that training point.

A comparison of the three methods presented is provided in a
series of papers by Tartakovsky and Wohlberg (2004), Wohlberg
et al. (2006), and Tartakovsky et al. (2007). Surprisingly, the NNC
method outperformed the more sophisticated ones, i.e., SVM and
IK, indicating the validity of the parsimony principle for this prob-
lem. Yet, the comparison between methods in such works was
done only in terms of the number of misclassified points without
considering other performance metrics, such as connectivity fea-
tures inherent in geological facies that can strongly impact con-
taminant transport simulations (e.g., Fernàndez-Garcia et al.,
2010). We consider this issue as non-ideal and in the next section
we seek for a method that can actually represent the presence of
connected geological bodies with elongated and curvilinear shapes.

3. Kernel regression approaches for facies classification

Kernel regression methods have been developed in statistics to
estimate the conditional expectation of a random variable without
assumptions about its probability distribution function. These
methods are well documented and summarized in the literature
(e.g., Hardle, 1990; Simonoff, 1996; Li and Racine, 2007). Suppose
that we ignore the fact that the target classification output is a bin-
ary function I(x, F1). Instead, we consider that it is a continuous
function that depends on the location x and a number of (yet
unknown) parameters b = [b0, b1, . . . , bN]T. The regression model
proposed here for facies classification assumes that the measured
data Ii = I(xi, F1), i = 1, . . . , n, can be expressed as

Ii ¼ mðxi;bÞ þ ei; i ¼ 1; . . . ;n; ð2Þ
where m(xi, b) is the regression function to be determined, and ei
are independent and identically distributed zero mean noise values.
Kernel regression is a form of regression analysis in which the func-
tionm is exclusively dictated by the data, and not prespecified a pri-
ori (no model assumed). At each point x the conditional expected
value of the dependent (indicator) variable can be estimated, i.e.,
m(x, b) = E[I(x, F1)]. The interest of kernel regression to facies recon-
struction resides on the fact that the conditional expected value of
the indicator variable is exactly the probability that the given facies
F1 prevails at that location, since

EfIðx;F1Þg ¼ 1 � Probfx 2 F1gþ 0 � Probfx R F1g ¼ Probfx 2 F1g ð3Þ
By definition, the probability of occurrence of a given facies is a

continuous variable ranging between 0 and 1. In order to separate
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