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s u m m a r y

Groundwater modelers face the challenge of how to assign representative parameter values to the stud-
ied aquifer. Several approaches are available to parameterize spatial heterogeneity in aquifer parameters.
They differ in their conceptualization and complexity, ranging from homogeneous models to heteroge-
neous random fields. While it is common practice to invest more effort into data collection for models
with a finer resolution of heterogeneities, there is a lack of advice which amount of data is required to
justify a certain level of model complexity. In this study, we propose to use concepts related to
Bayesian model selection to identify this balance. We demonstrate our approach on the characterization
of a heterogeneous aquifer via hydraulic tomography in a sandbox experiment (Illman et al., 2010). We
consider four increasingly complex parameterizations of hydraulic conductivity: (1) Effective homoge-
neous medium, (2) geology-based zonation, (3) interpolation by pilot points, and (4) geostatistical ran-
dom fields. First, we investigate the shift in justified complexity with increasing amount of available
data by constructing a model confusion matrix. This matrix indicates the maximum level of complexity
that can be justified given a specific experimental setup. Second, we determine which parameterization
is most adequate given the observed drawdown data. Third, we test how the different parameterizations
perform in a validation setup. The results of our test case indicate that aquifer characterization via
hydraulic tomography does not necessarily require (or justify) a geostatistical description. Instead, a
zonation-based model might be a more robust choice, but only if the zonation is geologically adequate.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Groundwater models are built for various types of investiga-
tions, both in science and in practice. They can serve as a basis
for hypothesis testing, risk assessment, and management of
resources. To provide reliable predictions for these objectives,
models must be calibrated sufficiently well. However, in light of
limited budgets, modelers have to cope with small calibration data
sets. For physically-based models that consider the fundamentally
important processes, the calibration procedure aims at finding
appropriate parameterizations and then constraining the plausible
parameter ranges. In groundwater modeling, the most effort is typ-
ically spent on characterizing the heterogeneity of the subsurface
parameters hydraulic conductivity and specific storage. Under

steady-state assumptions, only the spatial distribution of hydraulic
conductivity influences the flow conditions.

Several approaches are available to characterize the
heterogeneity in hydraulic conductivity, which differ in effort
and scale. Traditionally, a large number of hydraulic conductivity
estimates is obtained from collecting core samples and performing
permeameter tests (Sudicky, 1986; Sudicky et al., 2010), or from
performing slug or pumping tests. The local-scale information
obtained from such campaigns is then regionalized to larger scales
by upscaling, zonation, interpolation, or geostatistical simulation.
Alternatively, more detailed measurements can be obtained from
geophysical investigations (e.g., Hubbard and Rubin, 2000) or
hydraulic tomography (e.g., Gottlieb and Dietrich, 1995; Butler
et al., 1999; Yeh and Liu, 2000; Straface et al., 2007; Li et al.,
2007; Illman et al., 2010).

Hydraulic tomography has been developed to investigate the
heterogeneity in aquifer properties in a fine spatial resolution. A
number of pumping tests is performed sequentially in different
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wells at various locations throughout the aquifer. Pumping induces
a spatial distribution of drawdown, which is captured by observa-
tion wells throughout the domain. These drawdown data are then
used to derive via numerical inversion the spatial distribution of
hydraulic conductivity and related properties such as connectivity.
Further, the uncertainty attached to the inferred parameters can be
quantified. The spatial resolution of the derived parameter distri-
bution depends on the horizontal well spacing and the vertical
packer intervals (Yeh and Liu, 2000).

Several approaches exist for the analysis and interpretation of
the data obtained from all these aquifer characterization methods,
and for the representation of the observed spatial heterogeneity in
groundwater models. In general, a groundwater model with a
specific spatial structure of hydraulic conductivity must be
assumed. These assumptions vary in their conceptualization and
their complexity (e.g., the number of parameters involved). Please
note that the definition of model complexity is not unique, ranging
from pure parameter counting over factor analysis to concepts that
take into account probability distributions of parameters,
data-parameter sensitivity and predictive variance. In principle,
any parameterization ranging from the simple homogeneous case
with an effective conductivity value to a geostatistical random field
could be used. For the inversion of hydraulic tomography data,
geostatistics-based inverse modeling methods are most frequently
applied, such as the quasi-linear geostatistical approach (QL)
(Kitanidis, 1995) and the sequential successive linear estimator
(SSLE) (e.g., Yeh and Liu, 2000).

Eventually, the adequacy of the inferred hydraulic conductivity
field and the overall groundwater model will depend on both the
aquifer characterization technique and the chosen parameteriza-
tion. The more data are available for calibration, the more detailed
heterogeneities can be resolved. While it is common practice to
invest more effort into data collection for geostatistical models
(e.g. in form of hydraulic tomography data) than for simpler, effec-
tive conductivity models (e.g. in the form of core samples, slug
tests or single-hole tests), there is a lack of advice, which amount
and information content of data is required to justify a certain level
of model complexity. We therefore see a need for a method that
balances calibration effort (meaning both the effort for data collec-
tion and the computational effort to perform the inversion with the
model) with model complexity and, implicitly, with model predic-
tive performance. Assuming that the calibration effort increases
with data set size, we use the amount of available data as proxy
for the calibration effort in the following.

The formal statistical approach of Bayesian model averaging
(BMA) (Draper, 1995; Hoeting et al., 1999) qualifies as such a
method. It objectively ranks a number of competing models based
on their fit to available data. Starting from a prior belief about the
plausibility of each considered model, BMA updates this belief with
knowledge from observed data via Bayes’ theorem, and yields pos-
terior model probabilities that reflect the updated plausibility.
These probabilities allow for a quantitative ranking of the compet-
ing models and provide a basis for model selection. If more than
one model obtains a significant model probability, their predic-
tions can be combined in a weighted average that uses the proba-
bilities as model weights. Finally, the uncertainty caused by the
inability to uniquely choose only one of the considered models
can be quantified as between-model variance.

BMA has been used in various disciplines as a statistical tool for
model averaging (e.g., Ajami and Gu, 2010; Najafi et al., 2011;
Seifert et al., 2012), model selection (e.g., Raftery, 1995;
Huelsenbeck et al., 2004), quantification of model choice uncer-
tainty (e.g., Rojas et al., 2008; Singh et al., 2010; Troldborg et al.,
2010; Ye et al., 2010), data worth analysis (e.g., Rojas
et al., 2010; Neuman et al., 2012; Xue et al., 2014; Wöhling et al.,
2015), and model component dissection (Tsai and Elshall, 2013;

Elshall and Tsai, 2014). In groundwater modeling, it has been
applied to choose between different parameterizations of aquifer
heterogeneity, e.g. by Ye et al. (2004), Tsai and Li (2008), Rojas
et al. (2008), Morales-Casique et al. (2010), Seifert et al. (2012),
and Elsheikh et al. (2013), to name only a few selected examples.
Refsgaard et al. (2012) provide a review of strategies, including
BMA, to address geological uncertainty in groundwater flow and
transport modeling.

In the context of groundwater model selection and calibration,
finding a balance between performance and complexity is of great
interest (e.g., Yeh and Yoon, 1981; Fienen et al., 2009; Elsheikh
et al., 2013). BMA is ideally suited to guide this search, because it
implicitly honors the principle of parsimony or ‘‘Occam’s razor’’
(Jeffreys, 1939; Gull, 1988). The BMA ranking reflects an optimal
tradeoff between goodness-of-fit and model complexity, with
model complexity being encoded in the prior probability distribu-
tions of the model parameters. The prior uncertainty in parameters
is propagated through the model to the predictions, which are then
compared to the observed data. A wide predictive distribution will
be penalized by BMA, whereas a precise and accurate predictive
distribution will be favored.

Although this optimal tradeoff is a main result of BMA, BMA has
not yet been used to find the data amount required to justify a
given level of complexity. In a certain sense, this reverses the direc-
tion in which BMA is usually applied, i.e. to rank models of differ-
ent complexity for a given data set. We intend to fill this gap by
isolating the complexity component of the tradeoff from its perfor-
mance counterpart. We achieve this in a synthetic setup for BMA,
where the models are mutually tested against their own predic-
tions, instead of against real data. We introduce the concept of a
model confusion matrix, which expresses how likely it is to identify
the respective true model given the current experimental setup.
We refer to this analysis as model justifiability analysis, because it
reveals whether any specific level of complexity can be justified
by the available amount and type of data (independent of the actu-
ally measured values) through the eyes of BMA. The question of
justifiability is hence detached from the observed data values
and becomes a function of the calibration effort only. Note that
the calibration effort does not depend on the information content
in the data (the effort for data collection is the same, no matter if
the data turn out to be informative or not). The sensitivity of the
model parameters to the data, on the other hand, has an impact
on the outcome of BMA results and on the justifiability analysis.

While the justifiability analysis is based on the experimental
design but not the actually measured data values, the adequacy
of a model with regard to a specific prediction goal is defined by
the tradeoff between complexity and performance in predicting
the actually observed data values. The observations serve simulta-
neously as training and testing data for the specified model pur-
pose. Hence, model adequacy as opposed to justifiability is
assessed by the standard BMA routine based on the observed data.
We therefore propose to perform BMA in a two-step procedure,
running the synthetic justifiability analysis for the experimental
setup first and determining the adequacy of each model in light
of the observed data values in a second step that consists of the
conventional BMA method. The results of the first step will then
help to decide whether (a) the identified most adequate model is
really the best choice given the current set of models, or (b)
whether the identified model is only optimal given the currently
too limited amount and information content of the data. The latter
could occur when the available data do not allow to identify a more
complex model among the model set, although the more complex
model would actually be closer to the observed response of the
system.

Further, the justifiability analysis can uncover the reasons for
two models obtaining almost the same weight in the conventional
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