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s u m m a r y

In this work we address the model and parametric sensitivity of groundwater transport using the
Lagrangian-Stochastic Advection–Reaction (LaSAR) methodology. The ‘attenuation index’ is used as a rel-
evant and convenient measure of the coupled transport mechanisms. The coefficients of variation (CV) for
seven uncertain parameters are assumed to be between 0.25 and 3.5, the highest value being for the
lower bound of the mass transfer coefficient k0. In almost all cases, the uncertainties in the
macro-dispersion (CV = 0.35) and in the mass transfer rate k0 (CV = 3.5) are most significant. The global
sensitivity analysis using Sobol and derivative-based indices yield consistent rankings on the significance
of different models and/or parameter ranges. The results presented here are generic however the pro-
posed methodology can be easily adapted to specific conditions where uncertainty ranges in models
and/or parameters can be estimated from field and/or laboratory measurements.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The three dominant components of contaminant transport by
groundwater considered here are: (i) hydrodynamic drivers (i.e.,
advection and macro-scale dispersion), (ii) mass transfer (i.e.,
exchange with the immobile zones/phase), (iii) decay/degradation.
These three components (or mechanisms) occur simultaneously,
and for a linear system are hierarchical: The hydrodynamic
components directly influence mass transfer. Advection,
macro-dispersion and mass transfer all strongly influence degrada-
tion, whereas degradation of a contaminant has no impact on the
hydrodynamics or mass transfer; likewise, mass transfer does not
influence the hydrodynamics.

The hydrodynamic components of transport in groundwater are
strongly influenced on the one hand by the boundary conditions
and on the other hand by the underlying heterogeneity of the
hydraulic properties (Dagan, 1984, 1989). Although it is common
to describe the statistics of hydraulic conductivity by relatively
simple models (e.g., log-normal distribution with low to moderate
variance, exponential covariance, (Dagan, 1989)) the hydrogeolog-
ical structure of aquifers can be complex and variability large such
that hydrodynamic mechanisms are non-Fickian and the advec-
tion–dispersion equation is not applicable (e.g., Dagan et al.,
2003; Fiori et al., 2007). Mass transfer is typically described by a
simple equilibrium or first-order mass transfer model (Coats and

Smith, 1964; Brusseau et al., 1989; Brusseau and Rao, 1990); mass
transfer in fractured rock is commonly described as Fickian diffu-
sion between fractures and the immobile water of the rock matrix
(Neretnieks, 1980; Cvetkovic et al., 1999; Cvetkovic, 2010). In real-
ity, the mechanisms of mass transfer may be more complex such
that the diffusion-controlled exchange is non-Fickian (Havlin and
Ben-Avraham, 1987; Giona, 1992). Thus when quantifying
expected attenuation for a given aquifer, we are in a position to
first define the models for the dominant transport mechanisms
and then to infer their parameters by experimental means. Given
these tasks and uncertainties, systematic sensitivity analysis are
still of considerable practical interest in order to understand the
most dominant dependencies.

In this work we address the model and parametric sensitivity of
groundwater transport using the Lagrangian-Stochastic
Advection–Reaction (LaSAR) framework (Cvetkovic and Shapiro,
1990; Cvetkovic and Dagan, 1994). Furthermore, the ‘attenuation
index’ introduced and defined in our earlier work (Cvetkovic,
2011b) will be used as a relevant and convenient measure of the
coupled transport mechanisms. The sensitivity will be carried out
as global sensitivity analysis (Saltelli et al., 2000; Sobol, 2001;
Sobol and Kucherenko, 2009; Kucherenko et al., 2009; Lamboni
et al., 2013) where the so-called Sobol indices as well as
derivative-based indices, will be used to quantify the significance
of different parameters.

The paper is organised as follows. First, we summarise the ana-
lytical modelling framework. Next we define the attenuation index
and the global sensitivity indices. Finally, we present and discuss
the results of the computations.
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2. Solute transport by groundwater

Consider solute transport by groundwater from a source area A
(Fig. 1). The rate of contaminant release over the entire area J0ðtÞ
[M/T] is assumed given. A mean flow direction is assumed parallel
to the x-axis with a mean velocity U [L/T].

The hydrodynamic transport is characterised by a finite
(integral) scale denoted as Ix [L]; this scale may be specified as
the integral scale of the hydraulic conductivity, or the integral scale
of the Lagrangian velocity (Gotovac et al., 2008). With Ix and U, we
define a characteristic time used for normalisation in the following
as Ix=U.

There are different approaches available for quantifying con-
taminant transport by groundwater, from numerical to (semi)ana-
lytical. For sensitivity analysis it is highly advantageous to use
analytical approaches, which are as general as possible in terms
of processes and parameters.

Let J [M/T] denote the expected solute discharge across the con-
trol plane at location x parallel to the mean flow. For relatively low
concentrations, J can be computed by convolution

Jðx; tÞ ¼
Z t

0
J0ðt0Þhðx; t � t0Þdt0 ð1Þ

where h [1/M] is the discharge for unit pulse injection. The function
hðtÞ can be computed in the Laplace Transform (LT) domain based
on the solute mass balance that is ‘upscaled’, or averaged, from a
single trajectory (stream tube) to multiple trajectories as
(Appendix A):

bhðx; sÞ � hbci ¼ Z 1

0
e�ssð1þbg Þf ðs; xÞds � bf ½sð1þ bgÞ; x� ð2Þ

where f ðs; xÞ [1/T] is the probability density function (PDF) of water
travel time s; g [1/T] is the so-called ‘memory function’ that char-
acterises mass transfer (exchange) processes, ‘hat’ denotes LT, and
s is the LT variable. Note that h in (1) is in effect a ‘transfer function’,
decomposed by (2) into basic processes of advective transport con-
trolled by heterogeneous structure and hydrodynamics through f,
and the mass transfer controlled by small-scale diffusion and/or
sorption through g. The transport solution (2) derives from the mass
balance equations formulated along three-dimensional trajectories
with advective water travel time as an independent variable (the
LaSAR approach). Details of relating concentration, flux and dis-
charge along stream-tubes (trajectories) are given in Cvetkovic
and Dagan (1994).

Both f and g are aquifer-specific and can take different forms. In
this study, we shall use two most general analytical forms of these
functions. Specifically, we shall use the tempered one-sided stable
(TOSS) density as summarised in Appendix B (Cvetkovic, 2011a);
this density can be reduced to most of the known and generic

analytical water travel time PDFs used in hydrological transport.
For the mass transfer processes, we employ a multi-rate formula-
tion where the rates are distributed as a truncated power-law in
form of a Pareto type I distribution (Appendix C).

With f (13) of Appendix B and g (18) of Appendix C, expression
for h (2) writes:

bhðx; sÞ ¼ exp caa � c aþ s 1þ A � 2F1 1; m; mþ 1;�s=k0ð Þð Þ½ �a
� �

ð3Þ

which has six parameters: a; c; a; m; A and k0. a; c and a are
parameters dependent on the hydrodynamics and structure, related
to the first two moments of travel time s and r2

s in (14); note that in
the following we shall use the coefficient of variation f � rs=s in
stead of the variance. The parameters A; k0 and m control the mass
transfer (exchange) processes.

A wide range of special cases can be obtained from (3) relevant
for unconsolidated as well as for consolidated (fractured,
dual-porosity) porous media, which makes the LaSAR formulation
(2) or (3) particularly appealing. It is instructive to list special (lim-
iting) cases of the expression (3) as follows.

� If A ¼ 0 we have hydrodynamic transport only which incorpo-
rates mean advection and a macro-dispersive process as quan-
tified by f; a – 1=2 and a finite imply non-Fickian (but not
anomalous) transport.
� If A ¼ 0 (hydrodynamic transport only), and a! 0, we have

anomalous hydrodynamic transport (i.e., all moments of f above
zeroth are not defined), in form of the one-sided stable (Levy)
distribution (Hughes, 1995).
� If A ¼ 0 (hydrodynamic transport only), and a ¼ 1=2, then f is an

inverse-gaussian PDF and the transport is a solution of the
advection–dispersion equation with injection and detection in
the flux. Parameters a and c are related to a mean groundwater
velocity U and a macro-dispersivity aL by (15) in Appendix B;
note that in this case f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2aL=x

p
where x is the longitudinal

distance.
� If A ¼ 0 (hydrodynamic transport only), and a! 1, we have

plug flow with the mean water residence time s, i.e.,
h! dðt � sÞ whereby f! 0.
� If A ¼ 0 (hydrodynamic transport only), and a! 0, we have the

Gamma distribution that has been often used in hydrological
transport; parametrisation in this case (and a related case of
the exponential PDF also used frequently in hydrological trans-
port) are given in Cvetkovic (2011a).
� If A – 0; k0s� 1, we have hydrodynamic transport (Fickian or

non-Fickian) coupled with linear equilibrium sorption; if
a! 1=2, the hydrodynamic transport is governed by the ADE.
� If A – 0; m > 2� 3 we have hydrodynamic transport (Fickian or

non-Fickian) coupled with first-order linear (kinetic) mass
transfer; if a! 1=2, the hydrodynamic transport is governed
by the ADE. The limiting ‘memory function’ in this case is
gðtÞ ! Ak0e�tk0 .
� If A – 0; m ¼ 1=2 we have hydrodynamic transport (Fickian or

non-Fickian) coupled with Fickian diffusion and sorption into
immobile zones of limited capacity; if k0 ! 0, we have Fickian
diffusion and sorption into immobile zones of unlimited
capacity.
� If A – 0; a ¼ 1=2; m ¼ 1=2 and k0 ! 0 we have the classical

model of ADE transport in dual-porosity media with Fickian dif-
fusion into an unlimited matrix (Cvetkovic et al., 1999).

Eq. (3) is the simplest and most general (semi)analytical formu-
lation of groundwater transport for arbitrary A; 0 < a < 1 and
m > 0, particularly suitable for parametric as well as model sensi-
tivity analysis. h (3) depends on six parameters: s; f; a; A; m and
k0. Out of these, a and m would be more related to model sensitivityFig. 1. Problem configuration sketch.
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