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s u m m a r y

The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare
event and consequently should be labeled as anomalous. What people classically call anomalous is really
the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time
is generally labeled as Fickian dispersion. With a number of counter examples we show why this defini-
tion is fraught with difficulty. In a related discussion, we show an infinite second moment does not nec-
essarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian
dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renor-
malization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability
density function for a dispersive process, the distribution for the first passage times, the mean first pas-
sage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and
stochastic renormalization group operators. The fixed points of the renormalization group operators are
p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points
form a set of generalized self-similar processes. Power-law clocks are introduced to examine
multi-scaling behavior. Several examples of these ideas are presented and discussed.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Starting about 55 years ago (Zwanzig, 1960), people in the phy-
sics community began to recognize that diffusive processes are
often non-Fickian, i.e., what people now label as anomalous. Back
in the day, in an Eulerian frame and in Fourier–Laplace space,
non-Fickian was synonymous with a wave vector and/or a fre-
quency dependent diffusion tensor. Since the wave vector is dual
to space and frequency is dual to time, this is equivalent in real
space to a space and/or time dependent diffusion tensor which is
all too often imbedded as a kernel in an integro-partial differential
equation (Cushman and Ginn, 1993; Cushman et al., 1994;
Neuman, 1993; Neuman and Tartakovsky, 2009; Berkowitz et al.,
2002). It is well known and almost a classical result, that mathe-
matically this ‘‘non-locality’’ is a manifestation of upscaling in a
heterogeneous environment. See Koch and Brady (1987) or
Gelhar and Axness (1983) for early observations of this phe-
nomenon in porous media. Interest in non-Fickian dispersion in

hydrogeology was spurred by the MADE tracer tests (Boggs et al.,
1992), which concerned field-scale transport. More recently,
numerical simulations of flow and transport in detailed
pore-spaces imaged from geologic media have continued to gener-
ate interest in anomalous transport, but at a much smaller scale
(e.g., Blunt et al., 2013; Kang et al., 2014). It is indeed odd that in
view of how long people have recognized that dispersion/diffusion
may be anomalous (Gelhar et al., 1992) that most introductory
texts on hydrogeology and even many more advanced texts on
ground water contamination, do not even consider that dispersion
might not be Fickian—it is dogma.

In a Lagrangian frame, a process is considered Fickian provided
the mean square displacement is linear in time, otherwise the pro-
cess is considered anomalous or non-Fickian. Often researchers
delineate dispersive regimes by a power law mean square dis-
placement classification scheme: h(X(t) � X(t))2i � ta, if a > 1 then
the process is called super dispersive, if a < 1 then the process is
called sub dispersive, otherwise it is called Fickian, Brownian or
classical.

The main goal of this short communication is to argue that
Fickian dispersion is an anomaly, and that what people label as
anomalous dispersion is in reality the norm. In so doing we will
also illustrate some major problems with the power law classifica-
tion mentioned above. We will also review an alternative
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classification scheme based on a renormalization group analysis
and related scaling laws for self-similar mixing processes.

2. Fickian/Brownian dispersion/diffusion

In an Eulerian frame, to say a process is Fickian means the dis-
persion tensor is constant in time, i.e. does not depend on how long
you watch the mixing process. For simplicity in our discussion, and
to illustrate our most important points, we will also assume it does
not depend on space. Further, we assume a conservative tracer is
being observed. The Fokker–Planck equation for such a process
takes the form

@C
@t
¼ �r � VC þr � ðD � rCÞ ð1Þ

where C is the normalized concentration or transition density and D
is the constant dispersion tensor. Without loss of generality we
assume the medium is isotropic so that the dispersion tensor is
diagonal and further we align the x-direction along the direction
of mean flow. Thus there are two distinct components of D, longitu-
dinal and transverse, DL and DT respectively.

Corresponding to the Eulerian Eq. (1), in two dimensions with
the velocity constant and aligned in the x-direction, there are
two Lagrangian stochastic ode’s

dXðtÞ ¼ Vxdt þ
ffiffiffiffiffiffi
DL
p

dBxðtÞ
and
dYðtÞ ¼

ffiffiffiffiffiffi
DT
p

dByðtÞ
ð2Þ

where dBx and dBy are independent Brownian motions for the tra-
jectory of a particle (X(t), Y(t)). Mathematically, a Brownian motion
is defined by three points:

(1) The process is continuous and at the origin initially.
(2) The process has independent and weakly stationary

increments.
(3) The increments, X(t) � X(s), are Gaussian, N(0, t � s), t > s.

Violation of any of these points gives rise to a non-Fickian
process, i.e., a process that will not satisfy Eqs. (1) or (2).

3. Types of Non-Fickian dispersion

Historically, non-Fickian (anomalous) dispersion has been cate-
gorized in a Lagrangian framework as super-, sub-, or classical
(Fickian) by employing a power-law, mean-square displacement
(MSD) analogy: Let the MSD be a power law of the form
h(X(t) � X(0))2i � ta. If a > 1 the process is said to
super-dispersive, if a < 1 the process is sub-dispersive and it is
Fickian if a = 1. The case of infinite second moment is also consid-
ered super dispersive in this scheme. As will be illustrated shortly,
though not widely understood, this classification is fraught with
difficulty. But before we illustrate why it is a poor classification
scheme, we wish to dispel some widely held beliefs about the
causes of anomalous dispersion.

The following quote is in a very popular paper (Metzler and
Klafter, 2000): A power law MSD ‘‘is intimately connected with a
breakdown of the central limit theorem, caused by either broad dis-
tributions or long range correlations’’. The fact that this is not the
case is demonstrated by the following simple counter example
(Cushman et al., 2009). Consider a Brownian motion X(t) = B(H(t))
that is run with a deterministic, but non-linear and absolutely con-
tinuous clock, H(t), that is non-negative with derivative h(t). It is not
hard to see that the increments, X(t) � X(s) are N(0, H(t) � H(s)). A
discrete random walk that represents this process is given by
X(tn/M) � X(t(n � 1)/M) � N(0, h(tn/M)t/M). The classical central
limit theorem applies to this walk and shows its convergence to

X(t), yet if one sets H(t) = ta, a – 1, then one has hX2(t)i = ta which
is non-Fickian dispersion. There are no broad distributions (the
increments are Gaussian) and no long range correlations (the incre-
ments are independent) in this example. What makes this counter
example work is the non-stationary increments.

This last example begs the question: Mathematically what are
the origins of non-Fickian dispersion? The answer is provided in
the following (O’Malley and Cushman, 2012a): Let X(t) have zero
mean with independent wide-sense stationary increments such
that h[X(t) � X(0)]2i = f(t) <1, then one can show that f(t) = ct for
some constant c. Thus for a power-law mean square displacement
to occur, the process must have either increments that are not
independent or increments that are not wide-sense stationary.
Keep in mind that a process with stationary and independent
increments can still be non-Fickian if the increments are
non-Gaussian. The essential problem with classifying diffusive
processes based on their MSD alone is that this statistic does not
provide enough information to distinguish between dispersive
processes that are fundamentally different.

Two simple examples (O’Malley and Cushman, 2012a) will
illustrate the problems with the MSD classification scheme. The
first is a process that has infinite MSD, but by any reasonable mea-
sure, is sub-dispersive. The second is an uncountable number of
processes that have linear MSD, but that are anything but
Fickian. These counter examples rely on the non-linear clock
introduced earlier.

Let X(t) = La(1/[1 + exp(�t)] � 1/2) where La(t) is an a-stable
Levy motion. An a-stable Levy motion is like a Brownian motion
except the Gaussian distribution for increments is replaced with
a heavy tailed a-stable distribution. The non-linear clock in this
example is G(t) = 1/[1 + exp(�t)] � 1/2. The process can be simu-
lated by setting X(0) = 0, and accumulating increments using the
rule that X(t) � X(s) � Sa([G(t) � G(s)]1/a, b, 0) where Sa(r, b, l) is
an a-stable random variable with spread parameter r, skewness
parameter b, and shift parameter l. Because La(t) has infinite sec-
ond moment, so does X(t), yet as illustrated in Fig. 1 this process
comes to a screeching halt and hence should be considered
sub-dispersive. This occurs because the limit of X(t) as t goes to
infinity is the limit of La(t) as t approaches 1/2 from the left.
Since a-stable Levy motion has limits on the left, the limit exists
and the trajectory eventually becomes mired in a small neighbor-
hood of the limit.

Next let X(t) = BH(t1/2H) where BH(t) is a fractional Brownian
motion with Hurst exponent H and non-linear clock G(t) = t1/2H. A
fractional Brownian motion is like a Brownian motion except the
increments are N(0, (t � s)2H) where 0 < H < 1 is known as the
Hurst exponent. When run with this non-linear clock the MSD
takes the form hX(t)2i = t. Realizations of this process appear in
Fig. 2. Thus the MSD power law classification would suggest this
is Fickian process; yet it is anything but Fickian. Except when H
is 1/2 this process is non-Markovian with fractal dimension 2-H
(the fractal dimension is a measure for the space-filling ability of
the trajectory). Brownian motion has fractal dimension 3/2.
Fractional Brownian motion has been used extensively in geohy-
drology to model non-Fickian transport and distributions of
hydraulic conductivity (e.g., Molz et al., 1997; Benson et al.,
2013; Dempsey et al., 2015).

4. The scarcity of Fickian processes

By its’ very construction, the Lagrangian trajectory that gives
rise to Fickian dispersion has weakly stationary increments. Yet
it has recently been shown that stationary increment processes
are mathematically extremely rare, and many researchers have
experimental evidence to suggest that weakly stationary processes
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