
A virtual environment for network testing

Wade A. Fagen a, João W. Cangussu b,�, Ram Dantu c

a University of Illinois at Urbana-Champaign, USA
b University of Texas at Dallas, TX 75083, USA
c University of North Texas, USA

a r t i c l e i n f o

Article history:

Received 23 April 2007

Received in revised form

11 March 2008

Accepted 24 March 2008

Keywords:

Virtual network

Software testing

Re-configuration

a b s t r a c t

The testing of network-based solutions demands a series of tedious

tasks such as the deployment of the solution at different nodes and

the configuration of different topologies. The manual execution of

these tasks is very time consuming and a configurable environ-

ment to facilitate these tasks and consequently improve testing

performance is desired. In this paper a virtual network environ-

ment that can be easily re-configured is presented to address this

problem. The environment has been evaluated by a series of case

studies: one dealing with the deployment and containment of a

worm propagation attack and one dealing with detecting a denial

of service attack. Three smaller case studies have also been

developed. The results are a clear indication of the flexibility and

usefulness of the virtual network environment.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In nearly every networking research endeavor, it is critically important to test at least some
portion of the network protocol or solution introduced. For this task, some rely on simulation
environments provided by tools such as ns-2 (Fall and Varadhan, 2007) while others have complex
arrays of machines dedicated simply to the task of testing network software and protocols (Lundgren
et al., 2002). While both of these approaches have their benefits, currently not much middle ground
solutions between a simulation environment and a full fledged dedicated network exist.

One of the greatest advantages of a simulation environment is that every environmental factor is
virtually limitless. Since the number of nodes in the simulated network only increase the amount of

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and
Computer Applications

1084-8045/$ - see front matter & 2008 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jnca.2008.03.008

� Corresponding author. Tel.: +1972 883 2193; fax: +1972 883 2349.

E-mail addresses: wfagen2@uiuc.edu (W.A. Fagen), cangussu@utdallas.edu (J.W. Cangussu), rdantu@unt.edu (R. Dantu).

Journal of Network and Computer Applications 32 (2009) 184– 214

www.sciencedirect.com/science/journal/yjcna
www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2008.03.008
mailto:wfagen2@uiuc.edu
mailto:cangussu@utdallas.edu
mailto:rdantu@unt.edu


processing time required to complete the simulation, the task of setting up a 10,000 node network
becomes trivial (Fall and Varadhan, 2007). Moreover, simulation environments allow for the strict
control of a network—allowing for the simulation to place a designed algorithm in guaranteed worst
case scenarios such as high packet loss or slow response times. However, since simulation
environments are not run in real-time, the execution of simulated networks must take place a
window of time at a time. Therefore, the amount of time between a node receiving a request and
responding to that request is more often than not strictly defined. In the cases where the response
time is not strictly defined, the response time is defined by the result of a random number generator
or some other similar method of generation. As such, a simulation will never be able to fully achieve
an asynchronous network model as present in real networks.

On the other hand, physical networks provide the benefits of having a completely asynchronous
network with individual processes allowing for the each individual computer to respond in real-time
to incoming messages (Buyya et al., 2002; Macedonia et al., 1994). However, with the use of physical
computers, each computer must be individually configured. The application being tested must be
deployed to each computer, be able to ran at a specific time, and the amount of nodes in the network
is limited to the number of physical computers available. Therefore, it would be unrealistic in the vast
majority of cases for a 10,000 machine physical network to be deployed to test out a given algorithm.

A solution which rests between the simulation environment and a full fledged physical network,
in the ‘‘middle ground’’ of networking, is able to achieve an asynchronous network model due to the
fact that the application being tested is deployed to each individual computer as well as not having
the one-to-one limitation between the number of physical computers and the number of individual
applications being tested. As such, it may be realistic for 500 machines to be obtained for the testing
of a new algorithm. With twenty instances of the algorithm running on each machine, a 10,000 node
‘‘virtual network’’ can be created with many of the strengths of a full physical network. However,
many network virtual nodes may reside inside a single physical node and the results of the use of
such solution cannot be considered the same as if tested in a real network environment.

Of the widely available solutions which try to fill this middle ground, every solution which was
found either required a specific proprietary programming language, a specific operating system running
on each client machine in the cluster of networked computers, or some other limiting factor which
prevented an easy transition between network researching programs, protocols, or network topologies.

After exploring the currently available solutions, a criterion was developed to determine the
robustness and usability of a solution which allowed for the distribution of a program or component to
individual computers to allow for network testing. The criteria consider four key areas as defined
below.

� Interoperability: Can the given solution natively run across a wide variety of operating systems? If
so, can the given solution natively run the network component being tested on all of the
supporting operating systems? If so, can this be done without having the need to compile a
specific version for each operating system?
� System usability: Can the given solution successfully run as a user (non-root in Linux/UNIX-based

systems, non-Administrator in Windows-based systems) without degrading the functionality of the
solution? Often at universities and research labs, numerous computers are available for public use
where each user is given some limited-privileged user account login. If such a login is sufficient to
run the given solution, the availability of computers within an institution is greatly enhanced.
� Flexibility: Can numerous tests be scheduled within the given solution? If so, can tests be

scheduled while current tests are in progress or must all tests be scheduled at the beginning? Can
a test be preempted by another test at a user’s request? Can all of this be done without needing to
restart or re-instantiate the given solution?
� Adaptability: Can different networking components be ran throughout the series of tests? Can the

topology differ from the physical topology connecting the computers? If so, can this differing
topology be reconfigured throughout the series of tests?

Through research and evaluation of widely available solutions, no solution provided adequate
results based on the criteria above. Solutions deployed currently are nearly all platform and language

ARTICLE IN PRESS
W.A. Fagen et al. / Journal of Network and Computer Applications 32 (2009) 184–214 185



Download	English	Version:

https://daneshyari.com/en/article/457589

Download	Persian	Version:

https://daneshyari.com/article/457589

Daneshyari.com

https://daneshyari.com/en/article/457589
https://daneshyari.com/article/457589
https://daneshyari.com/

