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s u m m a r y

Inversion of the spatial variability of transmissivity (T) in groundwater models can be handled using
either stochastic or deterministic (i.e., geology-based zonation) approaches. While stochastic methods
predominate in scientific literature, they have never been formally compared to deterministic
approaches, preferred by practitioners, for regional aquifer models. We use both approaches to model
groundwater flow and solute transport in the Mar del Plata aquifer, where seawater intrusion is a major
threat to freshwater resources. The relative performance of the two approaches is evaluated in terms of
(i) model fits to head and concentration data (available for nearly a century), (ii) geological plausibility of
the estimated T fields, and (iii) their ability to predict transport. We also address the impact of condition-
ing the estimated fields on T data coming from either pumping tests interpreted with the Theis method or
specific capacity values from step-drawdown tests. We find that stochastic models, based upon
conditional estimation and simulation techniques, identify some of the geological features (river deposit
channels and low transmissivity regions associated to quartzite outcrops) and yield better fits to calibra-
tion data than the much simpler geology-based deterministic model, which cannot properly address
model structure uncertainty. However, the latter demonstrates much greater robustness for predicting
sea water intrusion and for incorporating concentrations as calibration data. We attribute the poor per-
formance, and underestimated uncertainty, of the stochastic simulations to estimation bias introduced by
model errors. Qualitative geological information is extremely rich in identifying large-scale variability
patterns, which are identified by stochastic models only in data rich areas, and should be explicitly
included in the calibration process.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Groundwater model parameters are usually heterogeneous and
uncertain. Fortunately, a large number of measurements of model
outputs (most often heads and concentrations) are usually
available, which favors formulating models in an inverse problem
framework. The availability of model independent tools for inver-
sion (Doherty et al., 1994; Poeter and Hill, 1998) has fostered its
common use in hydrological practice. Still, groundwater inversion
suffers from a number of problems (non-uniqueness, instability,
computational cost, etc.), as illustrated by the periodic reviews of
the topic (Yeh, 1986; Carrera, 1987; McLaughlin and Townley,
1996; Zimmerman et al., 1998; de Marsily et al., 1999; Carrera
et al., 2005; Franssen et al., 2009; Zhou et al., 2014). Amongst them,

spatial variability is likely the most difficult problem to address.
This work focusses on the characterization of spatial variability
of transmissivity (T).

Two sets of approaches can be identified in dealing with spatial
variability and the conceptual prior information: deterministic
and stochastic. Stochastic approaches rely on treating T as a random
field and estimating its properties from prior estimates of T (and/or
othermodel parameters) and available state variables (i.e., heads (h)
and concentrations (x) measurements). Initially, the problem was
formulated as finding the ‘best field’, in the sense of minimum
variance or the expected field conditioned to measurements
(Clifton and Neuman, 1982; Kitanidis and Vomvoris, 1983; Rubin
and Dagan, 1987b). Estimation uncertainties derived from these
solutions were too optimistic (Carrera and Glorioso, 1991). This
prompted the development of conditional simulation methods
(Gómez-Hernández et al., 1997), and more recently moment equa-
tions approaches (Hernández et al., 2003, 2006). All these methods
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assume stationarity of the T field. That is, they all assume that, prior
to measurements, nothing is known about variability patterns, so
that they effectively disregard geological knowledge. Although
much work has been done on geologically based geostatistics (e.g.,
Winter and Tartakovsky, 2002; Winter et al., 2003; Riva et al.,
2006),most applications of geostatistical inversion are based on this
assumption of stationarity.

The deterministic approach relies on the assumption that the
patterns of spatial variability are known from geological or geo-
physical information, so that the whole unknown field can be
expressed in terms of a limited number of uncertain parameters.
The process of expressing the field as a function of parameters is
called parametrization. The most widely used parametrization
method is zonation, which consists of subdividing the model
domain into a number of regions (zones). Zones are typically
(though not necessarily) homogeneous with a single effective
parameter value (e.g., Carrera and Neuman, 1986; Barlebo et al.,
2004). Therefore, in contrast to stochastic methods, the spatial
zonation pattern, normally inferred from the available geological
information, is prescribed explicitly in the deterministic approach.
The main advantage of zonation is its flexibility to incorporate geo-
logical or geophysical data available in the form of maps (sedimen-
tary deposits, paleochannels, water conducting features, etc.).
However, the identification of zones is a subjective and hard-to-
systematize task. In fact, an inappropriate definition of zones is
transmitted to errors in the model structure and is often a main
cause of failure in actual applications (Sun et al., 1998). Some
efforts have been devoted to alleviate the effect of errors in the
geometry of zones (e.g., Gaganis and Smith, 2006; Roggero and
Hu, 1998). However, no well-defined approach has emerged as
generally accepted. Another disadvantage of the deterministic
approach results from implicitly neglecting the effect of small scale
heterogeneity on flow and, especially, on solute transport. Thus,
the calibration process using the geostatistical approach captures
the structural fine detail better than that which can be captured
using a limited number of zones. However, despite of these prob-
lems, zonation remains the method of choice in hydrological prac-
tice, especially in regional or basin-scale groundwater models (e.g.,
Senger and Fogg, 1987; Guymon and Yen, 1990; Castro et al., 1998;
Walvoord et al., 1999; Shavit and Furman, 2001; Best and Lowry,
2014; Ala-aho et al., 2015; Nocchi and Salleolini, 2013, etc.).

The geostatistical approach has been applied successfully to
cases where geological information is not strong enough to allow
predefining patterns of spatial variability. This is certainly the case
in synthetic aquifers (e.g., Yeh and Liu, 2000; Kowalsky et al., 2004;
Zhu and Yeh, 2005, 2006; Alcolea et al., 2006b; Hao et al., 2008;
Franssen et al., 2009; Riva et al., 2010, 2011) and laboratory sand-
boxes (e.g., Liu et al., 2002, 2007; Illman et al., 2007, 2009). Field
applications are restricted to relatively small scale problems,
where geology is not very binding, with well defined stresses and
responses. These include hydraulic test interpretation (e.g., Meier
et al., 2001; Vesselinov and Neuman, 2001; Li et al., 2005;
Hernández et al., 2006; Rubin et al., 2010; Murakami et al., 2010;
Janetti et al., 2010; Bianchi Janetti et al., 2010; Berg and Illman,
2011, 2013, 2015), well capture zone delineation (e.g., Vassolo
et al., 1998; Kunstmann et al., 2002; Harrar et al., 2003; Riva
et al., 2006), river-aquifer interaction (e.g., Rötting et al., 2006),
or coastal aquifers (Alcolea et al., 2007, 2009) and others
(Barlebo et al., 2004; Franssen and Kinzelbach, 2008; Vesselinov
et al., 2001a,b; Chen et al., 2012).

Few stochastic studies have been carried out for large-scale
problems. Clifton and Neuman (1982) and Rubin and Dagan
(1987a,b) used a stochastic inversion approach to model the Avra
Valley aquifers under steady-state conditions. Rubin and Dagan
(1988) and Rubin et al. (1990) demonstrated the applicability of
the geostatistical approach in the Israeli Coastal Aquifer and the

Rio Maior aquifer, respectively. These examples proved useful in
advancing the method during its early stages. However, they did
not really demonstrate its validity, which is usually the case in
real-word large scale applications because little data are available
to test independently the model. In fact, to date, there is a very
important lack of real-world applications of stochastic theories
and approaches at large scale (Dagan, 2002; Neuman, 2004;
Renard, 2007). Recent exceptions include the works of Jardani
et al. (2012) and Dausman et al. (2015). This lack is much more
marked when it comes to stochastic inversion of flow and trans-
port data. We argue that the problem lies in ignoring geological
information, which is much richer at large than at small scale. That
is, patterns of geological variability (and, therefore, hydraulic vari-
ability) are usually well known at regional scale. Ignoring them
would be poor practice. Thus, when facing a regional-scale model,
professionals find that the easily accessible stochastic approaches
fail to incorporate the geological information and prefer determin-
istic approaches. Instead, geological information at the local scale
(<1 km) is usually much less specific, and patterns of variability
cannot be stated a priori. In such cases, parsimony justifies station-
arity as the prior model, which explains the broad use and success
of small scale stochastic models.

Much effort has been dedicated to overcome this limitation of
stochastic approaches. Perhaps, the most successful attempts are
based on categorizing heterogeneity in terms of hydrogeological
facies. Models of transition probabilities based on Markov chains
(TPMC) analyze spatial variability and generate equally-likely real-
izations of geological units or facies. TPMC methods are a powerful
geostatistical approach to estimate the spatial distribution of geo-
logical units using categorical indicator variables (e.g., Carle and
Fogg, 1996, 1997; Fogg et al., 1998; Ritzi, 2000; Elfeki and
Dekking, 2001; Park et al., 2004; Ritzi et al., 2004; Zhang et al.,
2006; Li, 2007a,b; Dai et al., 2007; Zhang and Li, 2008; Ye and
Khaleel, 2008; Khaninezhad et al., 2012a,b). These approaches have
been generalized using multiple-point geostatistics and connectiv-
ity concepts (see Renard and Allard (2013) for a recent review). In
practice, these approaches involve generating a large number of
lithofacies distributions and/or hydraulic conductivity fields and
rejecting those that fail to honor observed heads (e.g., Sakaki
et al., 2009; Zhou et al., 2012; Alcolea and Renard, 2010; Berg
and Illman, 2011; Khodabakhshi and Jafarpour, 2013). Other
approaches aimed at reproducing actual variability patterns are
based on geophysical data to compensate for the scarcity of
in situ hydrological measurements and to improve the accuracy
of spatial heterogeneity characterization (e.g., Rubin et al., 1992;
Copty et al., 1993; Hyndman et al., 1994; Hubbard et al., 1997;
Ezzedine et al., 1999; Hubbard and Rubin, 2000; Chen et al.,
2001; Doro et al., 2013). Although all these techniques look
promising, their application to real regional systems is still in
developmental stages.

In light of the above considerations, the first relevant question is
whether the geostatistical approach is suitable for modeling real
regional aquifers or whether in these cases the inverse problem
is best handled in a deterministic framework.

A complementary key question when using geostatistical inver-
sion approaches is the source of T data. These are generally
obtained from long-term pumping tests, which are expensive
(and thus scarce). Alternatively, additional T data can be derived
from specific capacity (pumping rate, Q, divided by drawdown,
s). Specific capacity (SC) is the parameter most often provided by
drillers from step-drawdown tests to characterize the performance
of a well. Hence, SC data are often much more abundant than T
data. Clifton and Neuman (1982) and Ahmed and Marsily (1987)
argued that the estimation of a T field is improved by using both
pumping test and specific capacity data. On the other hand,
Meier et al. (1999) demonstrated that these two types of
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