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s u m m a r y

A fundamental concept in groundwater hydrology is the notion of steady state, or equilibrium conditions.
When a system at some initial steady state condition is perturbed by pumping, a transient cone of depres-
sion will develop and the system will approach a new steady state condition. Understanding the time
scale required for the transient process to occur is of practical interest since it would help practitioners
decide whether to use a steady state model or a more complicated transient model. Standard approaches
to estimate the response time use simple scaling relationships which neglect spatial variations.
Alternatively, others define the response time to be the amount of time taken for the difference between
the transient and steady state solutions to fall below some arbitrary tolerance level. Here, we present a
novel approach and use the concept of mean action time to predict aquifer response time scales in a two-
dimensional radial geometry for pumping, injection and recovery processes. Our approach leads to rela-
tively simple closed form expressions that explicitly show how the time scale depends on the hydraulic
parameters and position. Furthermore, our dimensionless framework allows us to predict the response
time scales for a range of applications including small scale laboratory problems and large scale field pro-
blems. Our analysis shows that the response time scales vary spatially, but are equivalent for pumping,
injection and associated recovery processes. Furthermore, the time scale is independent of the pumping
or injection flow rate. We test these predictions in a laboratory scale aquifer and find that our physical
measurements corroborate the theoretical predictions.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Population growth and associated industrial and agricultural
activities can have considerable impact on groundwater resources.
Since groundwater plays a significant role in our social and eco-
nomic wellbeing, understanding groundwater responses to natural
and anthropogenic changes is important. Several studies have
examined various properties of groundwater flow processes using
different tools including numerical or analytical models, field
investigations and laboratory experiments (e.g. Theis, 1935;
Freeze and Witherspoon, 1966; Bredehoeft et al., 1982; Hantush,
2005). Many of these studies have included radial flow problems
to investigate pumping, injection and recovery processes.

A common concept used in groundwater modeling is defining a
steady state (or equilibrium) flow condition. When a forcing condi-
tion on a system at equilibrium is changed, the system will

undergo a transient response to approach a new equilibrium state.
A point of interest is to understand the amount of time taken for
the system to reach steady state. Strictly speaking, from a mathe-
matical point of view, an infinite amount of time is required for
the system to asymptote to steady state conditions. However, this
strict mathematical definition is impractical because we can never
wait for an infinite amount of time. Therefore, we wish to estimate
a ‘‘sufficiently long period” of time that is required for the system
to ‘‘effectively” reach steady state (Schwartz et al., 2010). However,
the concept of a ‘‘sufficiently long period” is subtle.

A change in flow conditions at a pumping or injection well will
eventually influence regions further away from the well, poten-
tially over very large areas, including distant boundary conditions.
When the flow rate at a pumping or injection well is altered, a tran-
sition pattern, often called a cone of depression, propagates
through the aquifer with time. Understanding the amount of time
required for a transient system to effectively relax to equilibrium
can help us decide whether to use a steady state model or a more
complicated transient model to describe the groundwater flow
process (Simpson et al., 2013; Jazaei et al., 2014).
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The concept of aquifer response time has been analyzed pre-
viously for various groundwater problems. Theis first considered
the response of a groundwater system to pumping by solving a
mathematical model describing the transient flow near a pumping
well in an infinite aquifer (Theis, 1935). After this initial study,
Theis then considered the factors controlling the response time
(Theis, 1940). These factors include the aquifer transmissivity, T;
the storage coefficient, S; and the length scale of the problem. Theis
concluded that the rate at which the cone of depression spreads is
proportional to T and inversely proportional to S. Later, other
researchers presented simpler scaling formulas to estimate the
aquifer response time scale (e.g. Gelhar and Wilson, 1974;
Townley, 1995; Erskine and Papaioannou, 1997; Manga, 1999;
Haitjema, 2006). For example, Gelhar and Wilson (1974) suggest
that the hydraulic response time is th ¼ nL2=3T , where n is the
average porosity and L is the aquifer length. Such scaling formulas
suggest a constant time scale for the entire system and do not pro-
vide any information about how the time scale depends on posi-
tion. Other studies (e.g. Schwartz et al., 2010; Kooi et al., 2000;
Rousseau-Gueutin et al., 2013) define the response time as the
amount of time taken for the difference between the transient
and steady state solutions to fall below some tolerance. For exam-
ple Rousseau-Gueutin et al. (2013) define the aquifer response
time to be the amount of time required for 95% of the transient
head changes to have occurred. This definition does not lead to a
simple closed form expression.

Recently, we presented a different framework to quantify the
aquifer response time scale (Simpson et al., 2013; Jazaei et al.,
2014). Our analysis provides explicit mathematical expressions
showing how the response time scale depends on position, aquifer
properties and boundary conditions. This approach does not
require any predefined thresholds, and avoids the need for solving
the transient flow problem. However, our previous analyses were
limited to one-dimensional Cartesian problems in which flows
where driven by a surface recharge conditions, or changes at the

interface between the surface water and groundwater. In contrast,
here we analyze the time scale of a two-dimensional radial system,
in which the transition between different steady state conditions is
driven by flow changes at the pumping or injecting well. Our ana-
lysis is relevant for both converging and diverging flows and we
employ a nondimensional framework which leads to more elegant,
generalized results, which can be used to explain the difference
between smaller scale laboratory flow conditions and larger scale
field conditions.

Our approach involves analyzing the first and second moments
of the transition time distribution, which is similar to the way in
which some previous studies have used temporal moment analysis
to investigate spatial variations in hydraulic conductivity (Li et al.,
2005; Zhu and Yeh, 2006). We note, however, these previous stu-
dies were focusing on analyzing the hydraulic conductivity fields,
and did not consider using moment analysis to derive expressions
for the aquifer response time scales.

The objective of the present work is to develop a framework to
quantify the spatial variations in response time scales under radial
flow conditions. We investigate pumping, injection and recovery
processes to understand how their response time scales depend
on hydraulic and geometric properties of the aquifer. We employ
two mathematical concepts, known as the mean action time
(MAT) and the variance of action time (VAT) in this analysis. We
employ a dimensionless framework that can be used to study both
large scale field problems as well as small scale laboratory pro-
blems. Our theoretical predictions are tested using new datasets
from laboratory scale experiments.

2. Mathematical model

In this section we first use a dimensional radial flow model to
define a simpler and more general dimensionless model. Primed
variables denote dimensional quantities and unprimed variables
denote dimensionless quantities.

Nomenclature

Notation
B0 aquifer thickness [L]
C1;C2;C3 integration constants
FðtjrÞ CDF for the dimensionless models [–]
Fðt0jr0Þ CDF for the dimensional models [–]
f ðtjrÞ PDF for the dimensionless model [–]
f ðt0jr0Þ PDF for the dimensional model [1/T]
gðrÞ h1ðrÞ � h0ðrÞ
hðr; tÞ dimensionless hydraulic head [–]
h0ðr0; t0Þ dimensional hydraulic head [L]
h� characteristic hydraulic head [L]
h0ðrÞ dimensionless initial hydraulic head [–]
h00ðr0Þ dimensional initial hydraulic head [L]
h1ðrÞ dimensionless steady hydraulic head [–]
h01ðr0Þ dimensional steady hydraulic head [L]
hð1; tÞ dimensionless hydraulic head at the boundary [–]
h0ðR0; t0Þ dimensional hydraulic head at the boundary [L]
K 0 hydraulic conductivity [L/T]
L aquifer length [L] (Gelhar and Wilson, 1974)
MðrÞ dimensionless mean action time (MAT) [–]
m positive integer constant [–]
n average porosity [–] (Gelhar and Wilson, 1974)
Q 0 flow rate at the well [L3/T]
Q 0

P ;Q
0
I1;Q

0
I2 flow rate at the well in Experiment-P, Experiment-I1

and Experiment-I2, respectively [L3/T]
r dimensionless location from the well center [–]

r0 dimensional location from the well center [L]
r� characteristic length [L]
r0w dimensional radius of the well [L]
r1; r2 dimensionless radial distance of monitoring points

from the well [–]
r01; r

0
2 dimensional radial distance of monitoring points

from the well [L]
R0 dimensional location of the boundary from the well

center [L]
S aquifer storage coefficient [–]
T 0 aquifer transmissivity [L2/T]
t dimensionless time [–]
t0 dimensional time [T]
t� characteristic time [T]
th hydraulic response time [T] (Gelhar and Wilson,

1974)
VðrÞ dimensionless variance of action time (VAT) [–]

a r0w=R
0 [–]

b Q 0

2pT 0h00a
[–]

d parameter indicating a specific time [T]
sðrÞ dimensionless time scale MðrÞ þm

ffiffiffiffiffiffiffiffiffiffi
VðrÞp

[–]
/ðrÞ gðrÞ½VðrÞ þ TðrÞ2� [–]
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