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Over the last decade the number of applications of copula functions for multidimensional modeling of
hydrological parameters has significantly increased. However, most of the studies assume stationarity
in the marginal distribution parameters as well as in the dependence structure of the variables. This is
because the available time series are often too short for using a non-stationary multivariate model. In this
study we analyze the joint probability of flood peak and volume based on a discharge time series of the
Rhine River providing 191 years of data. We find significant positive trends in the marginal distribution
parameters as well as in the dependence measure from analyzing 50-year moving time windows. Fitting
time dependent marginal distributions and time dependent copulas to the data sets, and comparing the
results with the stationary approach, shows the influence of the non-stationary behavior of the variables.
The results are illustrated by calculating the joint probability of the flood peak and volume for four cases:
i. considering all parameters as time dependent, i.e. the location, scale and shape parameter of the mar-
ginals and the copula parameter, ii. considering the location and scale parameter of the marginals and the
copula parameter as time dependent, iii. considering the location parameter of the marginals and the
copula parameter as time dependent, and iv. considering only the copula parameter as time dependent.
The results highlight that the joint probability, illustrated by the isoline of a given exceedance probability,

varies significantly over time when non-stationary models are applied.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Over the last years copula functions have been increasingly
used for various multivariate hydrological analyzes. They were
applied for rainfall frequency analysis (e.g. De Michele and
Salvadori, 2003; Grimaldi and Serinaldi, 2006), flood frequency
analysis considering peak flow and flood volume (e.g. Favre et al.,
2004; Karmakar and Simonovic, 2009), drought frequency analysis
(e.g. Shiau, 2006; Kao and Govindaraju, 2010), storm surge model-
ing (e.g. Wahl et al., 2012; Corbella and Stretch, 2013; Zhong et al.,
2013), and for several other multivariate problems. The main
advantage of copulas over other multivariate models is related to
the fact that the dependency between variables can be modeled
separately from their marginal distributions. Furthermore, copulas,
especially those belonging to the Archimedean family, are rela-
tively easy to construct and capable of modeling a broad range of
dependence structures. To the authors’ knowledge most of the
hydrological studies where copulas were applied assumed
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stationarity of the parameters of the marginal distributions as well
as the dependence structure. This assumption, however, might not
hold and non-stationary behavior of one or more marginal param-
eters and/or the interdependence between the variables of interest
may influence the results of the multivariate statistical analysis. In
the univariate case, non-stationary extreme value models have
been widely applied. A general and comprehensive introduction
to the topic was given by Coles (2001). Katz et al. (2002), for exam-
ple, applied non-stationary extreme value models to precipitation
and discharge time series. Khaliq et al. (2006) reviewed several
methods of modeling non-stationary hydro-meteorologic time
series, and Mudersbach and Jensen (2010) derived future coastal
design water levels using a non-stationary approach.

The necessity of applying non-stationary extreme value
approaches is primarily due to trends in the time series that have
to be modeled. Several authors already reported significant trends
in the rainfall pattern over Europe (e.g. Moberg and Jones, 2005)
and in the annual maximum discharges of major German rivers
(e.g. Bormann et al,, 2011), one of which (the Rhine River) is
investigated here. Whether the trends reported here are related
to climate change, land use changes within the catchments or
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in-stream river engineering is not further investigated as it is not
relevant for the purpose of the study.

Although various authors (e.g. Chebana et al., 2013) assessed
the dependence of different hydrologic parameters over time, the
number of papers dealing with non-stationary multivariate
extreme value models is rather sparse. Zhang (2005) first consid-
ered non-stationary marginal distributions in a conditional multi-
variate model based on copulas. The dependence structure was
assumed to be constant over time. Corbella and Stretch (2013) also
applied non-stationary marginal distributions combined with
conditional copula functions with constant dependence measures.
Chebana et al. (2013) first mentioned the idea of using copula
functions with time dependent parameters in case of a changing
dependence structure between the investigated variables.

There are several possible explanations that only few studies up
to now were concerned with multivariate non-stationary statistics.
From a practical point of view, time series are often too short to set
up a non-stationary multivariate model. Furthermore, there are
also still some mathematical issues that need to be solved; how
can we handle for example the problem that the marginal distribu-
tion family may vary over time? However, when designing hydrau-
lic structures often more than one parameter has to be taken into
account, and having the anticipated lifetime of the structure in
mind one is not only interested in reliable present-day design val-
ues, but also in estimating potential future changes in these values.

Here, we combine the univariate non-stationary extreme value
analysis with a novel approach to model changes in the depen-
dence of two variables over the time. The main objective is to
outline how bivariate design parameters may change if non-
stationarities are existent and taken into account in the univariate
and bivariate statistical models. We use a time series of mean daily
discharge of the Rhine River comprising 191 years of data mea-
sured at gauge Worms in Germany. We model the annual maxima
of the flood discharge and the corresponding flood volumes of the
direct runoff.

The remainder of the paper is organized as follows: In Section 2
we give a short introduction to the copula theory and to univariate
and bivariate non-stationary extreme value analysis. In Section 3
the data set for the case study is introduced, before the results
are presented in Section 4 and discussed in Section 5.

2. Methods
2.1. General copula theory

Since copula functions have been widely used over the last
years in hydrology and a corresponding number of papers has been
published, we only provide a short and basic introduction to the
theoretical background of copula functions. More information can
be found for example in Nelsen (2006) and Salvadori et al. (2007).

Copulas are flexible joint distributions for modeling the depen-
dence structure of two or more random variables. First mentioned
by Sklar (1959), the joint behavior of two (or more) random
variables X and Y with continuous marginal distributions u = Fx
(x)=P(X < x) and v=Fy(y) = P(Y < y) can be described uniquely by
an associated dependence function or copula function C. In the
bivariate case, the relationship between all (u,7)€ (0,1)* can be
written as:

Fxy(x,y) = ClFx(x), Fy(y)] = C(u, v) (1)

where Fxy(x,y) is the joint cumulative distribution function (cdf) of
the random variables X and Y.

A copula function with a strictly monotonically decreasing gen-
erator function ¢:(0,1) - (0,00) with ¢@(1)=0 belongs to the

Archimedean copula family. The general form of one-parametric
Archimedean copulas is

Co(u, v) = @' [@(u) + @(v)] (2)

where 0 denotes the copula parameter. In this study we use three
Archimedean copulas, namely the Clayton, Frank, and Gumbel cop-
ulas. They are relatively easy to construct, flexible, and capable of
modeling the full range of tail dependencies. The Clayton copula
has lower tail dependence, the Frank copula has no tail dependence,
and the Gumbel copula has strong upper tail dependence (e.g.
Nelsen, 2006).

In multivariate extreme value analysis one is often concerned
with the problem of choosing an adequate design event out of a
large number of possible parameter combinations, since all data
couples (u,v) on the same probability level have the same bivariate
probability of exceedance. However, some combinations of a given
probability are, at least in theory, more likely than others. There-
fore the relevant design event can be selected as the point with
the largest joint probability density on the probability-isoline as
outlined for example by Grdler et al. (2013):

(u, v) = argmax fiy (Fy ' (u), F,' (v)). 3)
Cyy (u,v)=k
The resulting design values (x,y) can then easily be calculated
using the inverse of the cumulative distribution functions of the
marginals:

x=Fy'(u)and y = F;'(v) (4)

For practical applications, such as reservoir design, there may
exist more appropriate approaches for selecting the relevant
design event. Process-based models can be applied to simulate
the system’s response to several combinations of the design rele-
vant variables and the cost-benefit ratio can be maximized. Here,
given the exemplary character of the study, we will outline the
temporal changes of the bivariate design values of X and Y using
the most likely event.

Furthermore, in hydrologic and hydraulic applications one is
mostly interested in the mean interarrival time between two
design events, usually given in years and also known as return per-
iod (RP). In a univariate context the return period is commonly
defined as:

Uy
L . ©)
where ur denotes the mean interarrival time (typically given in
years; when using annual maxima values, ur equals 1 year). Fx(x)
represents the cumulative distribution function of the univariate
variable X.

In the multivariate domain, however, it is still discussed by the
community which method is most suitable to transform the joint
exceedance probability to a multivariate joint return period (JRP).
Here, we follow the approach introduced by Salvadori et al.
(2007). The JRP is based on the bivariate cdf Fxy(x,y), expressed
by the bivariate copula function Cy(u,v) (Eq. (1)) and the cdf’s of
the marginals. This JRP is often denoted as AND-joint return period
(T") since it is based on the probability that X and Y exceed the
values x and y, respectively: P(X>x A Y >Yy). Hence, the bivariate
AND-JRP T" can be written as:

IuT _ luT
PX>=xAY >2Yy) 1-Fx(x)—Fy(y)+ClFx(x),Fy(y)]
_ :uT (6)
1—Fx(x) = Fy(y) + C(u, v)
A comprehensive overview about several other available meth-
ods to estimate the JRP is given e.g. in Volpi and Fiori (2014), De
Michele et al. (2013), Grdler et al. (2013), and references therein.
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