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s u m m a r y

Adequate characterization of aquifer heterogeneity is critically important for the sustainable use, protec-
tion, and remediation of groundwater resources. The combined use of hydrological and geophysical mea-
surements is arguably the most effective means of achieving this objective. In this regard, significant
progress has been made on the quantitative integration of geophysical and hydrological data at the local
scale. However, the extension of such approaches to larger, more regional scales remains a major research
challenge. In this paper, we demonstrate the application of a recently developed regional-scale hydrog-
eophysical data integration approach, which is based on Bayesian sequential simulation, to a field data-
base from Quebec, Canada consisting of low-resolution, surface-based geoelectrical measurements as
well as high-resolution direct-push and borehole-based measurements of the electrical and hydraulic
conductivities. The results of our study, which involved the integration of data along an approximately
250-m-long survey line, confirm that this novel methodology, with suitable adaptation, is fully applicable
to field data and has the potential of providing realistic estimates of the spatial distribution of hydraulic
target parameters at the regional-scale. Equally importantly, through the generation of multiple stochas-
tic realizations, the methodology allows for quantitative assessment of the uncertainty associated with
the inferred subsurface models, which in turn is essential for interpreting subsequent predictions of
the flow and transport characteristics of the studied region.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The protection, remediation, and sustainable management of
the world’s increasingly fragile groundwater resources require
adequate models of the spatial distribution of hydraulic conductiv-
ity as prerequisites for realistic predictions of groundwater flow
and contaminant transport (e.g., Delleur, 1999; Chen et al., 2001).
The hydraulic conductivity is an inherently challenging material
property to estimate because it varies over many orders-of-magni-
tude, typically exhibits a pronounced degree of spatial heterogene-
ity, and can in general only be measured through dedicated
experiments (e.g., Domenico and Schwartz, 1998; Ezzedine et al.,
1999; Rubin, 2003; Schön, 2004; Butler, 2005).

Traditionally, the hydrological characterization of aquifers has
been based on evidence from drill cores, hydraulic borehole logs,
and tracer and pumping experiments. Core- and borehole-based

measurements can provide detailed local information, but such
information is inherently 1D and spatially sparse in nature, while
tracer and pumping experiments tend to capture only the gross
average properties of the probed subsurface region. Correspond-
ingly, there is a large gap in terms of spatial coverage and resolu-
tion between these conventional hydrological techniques and
hence they are, without complementary information, often inade-
quate for characterizing heterogeneous aquifers (e.g., Sudicky,
1986; McKenna and Poeter, 1995; Schreibe and Chien, 2003; de
Marsily et al., 2005). While geophysical methods have the potential
of bridging this gap in resolution and coverage associated with tra-
ditional hydrological measurements, they do in general not exhibit
any direct sensitivity to the hydraulic conductivity. Moreover, any
potential rock physical relationships between geophysical parame-
ters and the hydraulic conductivity tend to be site- and scale-spe-
cific (Purvance and Andricevic, 2000; e.g., Schön, 2004; Lesmes and
Friedman, 2005; Hyndman and Tronicke, 2005; Linde, 2006).

To overcome these complications, a number of strategies have
been proposed for local-scale aquifer characterization, that is, at
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lateral distances ranging from approximately 5 to 50 m, typical
involving a combination of core- and/or borehole-based hydraulic
measurements and high-resolution crosshole tomographic geo-
physical surveys (e.g., Hyndman et al., 1994; Hyndman and
Harris, 1996; Chen et al., 2001; Singha and Gorelick, 2005;
Paasche et al., 2006; Dafflon et al., 2009b, 2009a, 2010; Dubreuil-
Boisclair et al., 2011; Lochbühler et al., 2013) Most of these local-
scale data integration approaches are based on geostatistical
methods, which are not only well suited for assimilating diverse
sources of information of varying resolution and hardness, but also
offer the possibility of constraining the uncertainty of the inferred
models. These local-scale data integration approaches are reaching
a certain degree of maturity. Due to the lack of closely spaced bore-
holes for effective crosshole tomographic imaging, the extension of
these local-scale techniques to larger scales does, however, repre-
sent a major and until recently essentially unresolved challenge.
This is unfortunate since in many, if not most, cases it is at these
larger scales that the greatest benefits of improved flow and trans-
port predictions can be reaped (Domenico and Schwartz, 1998).

To address this problem, Ruggeri et al. (2013a) recently pro-
posed a novel method for the quantitative integration of larger-
scale geophysical and hydrological data based on a geostatistical
technique known as Bayesian sequential simulation or BSS
(Doyen and Boer, 1996). This approach showed significant promise
when applied to realistic synthetic data for heterogeneous larger-
scale aquifer models, but its practical viability remained unproven.
Some promising, albeit highly preliminary, initial results of the
application of this novel data integration techniques to real data
were recently presented by Ruggeri et al. (2013b) in the context
of a recent broad-public review.

The objective of this paper is to extend and complement the
previous work by Ruggeri et al. (2013a, 2013b) by rigorously
testing this novel data integration approach on a typical sub-regio-
nal-scale geophysical and hydrological field database. More specif-
ically, we wish to explore the method’s capacity and robustness for
generating, in a computationally efficient manner, realistic condi-
tional stochastic realizations of the larger-scale hydraulic conduc-
tivity field as well as for assessing the uncertainties of the thus
inferred stochastic aquifer models.

2. Methodological background

In the following, we briefly outline the methodological founda-
tions of the BSS-based data integration approach of Ruggeri et al.
(2013a) before proceeding to assess its practical potential by
applying it to field measurements. The BSS method (Doyen and
Boer, 1996) allows for the generation of multiple, spatially corre-
lated realizations of some variable of interest, referred to as the pri-
mary variable, conditioned to (i) spatially extensive measurements
of a related secondary variable, as provided for example by geo-
physical surveying; and (ii) sparsely distributed measurements of
the primary variable, as provided for example by borehole data.
The following simplified version of Bayes’ theorem forms the basis
for the technique:

pðAnjBn;A1; . . . ;An�1Þ ¼ c � pðBnjAnÞ � pðAnjA1; . . . ;An�1Þ; ð1Þ

where A and B denote the primary and secondary variables, respec-
tively, p(�) denotes a probability distribution, and c is a normaliza-
tion constant. Eq. (1) is valid under the assumption of conditional
independence of Bn with respect to A1, A2, . . ., An�1 when given An.
That is, we assume that p(Bn|A1, . . ., An) = p(Bn|An).

As with all sequential simulation procedures, the generation of
each stochastic realization using BSS is accomplished iteratively,
whereby previously simulated values for the primary variable at
points along a randomly chosen path through the model space

are treated as known ‘‘data’’ when simulating this variable at sub-
sequent points (e.g., Goovaerts, 1997). Before the simulation
begins, the covariance matrix for the primary variable is defined
based on the horizontal and vertical variograms computed from
existing values. In each iteration of the procedure, a value for the
primary variable at cell n is then randomly drawn from the poster-
ior distribution p(An|Bn, A1, . . ., An�1), which is obtained by multi-
plying the prior distribution p(An|A1, . . ., An�1) with the likelihood
function p(Bn|An). The prior distribution is conditional to the mea-
sured and previously simulated values of the primary variable in
cells 1 through n � 1, and is obtained by simple kriging of those
values to obtain a Gaussian distribution having the kriging mean
and variance. The likelihood function, which expresses the range
of values for the primary variable in cell n that is consistent with
a particular measured value of the secondary variable at the same
location, is determined from the joint probability density p(A,B),
which in turn is computed from collocated measurements using
a non-parametric kernel-based smoothing approach (Silverman,
1986; Wand and Jones, 1995). The posterior distribution can be
viewed as an updated state of information that accounts for the
prior and likelihood information at the chosen location. One reali-
zation of the primary variable is generated when all unknown cells
in the model space have been simulated. Quite importantly, multi-
ple stochastic realizations can be readily obtained by changing the
order of the visited cells and repeating the simulation procedure.
The latter allows for an assessment of the posterior ensemble
uncertainty.

It should be noted that the BSS method is highly flexible with
regard to the relationship that exists between the primary and sec-
ondary variables, in the sense that the likelihood is estimated
empirically from collocated measurements of these variables. The
quality of the relationship between A and B is thus reflected in
the variability of the output stochastic realizations. Also note that,
unlike cokriging-based simulation methods, the BSS approach does
not rely on a generalized linear regression model, which is not an
appropriate choice when the relationship between the primary
and secondary variables strongly deviates from being linear and
multi-Gaussian. On the other hand, when these conditions are sat-
isfied, approaches such as collocated cokriging could be equally
well implemented.

The hydrogeophysical data integration approach of Ruggeri
et al. (2013a), which again showed significant potential in the
course of its initial testing on synthetic data, consists of two key
steps, both of which are based on the general BSS methodology
outlined above. Fig. 1 summarizes the overall procedure. In the
first step, high- and low-resolution geophysical parameter esti-
mates (primary and secondary variable, respectively) are used to
generate fine-scale realizations of the underlying geophysical
property. The aim of this step is to effectively downscale the
low-resolution geophysical parameter estimates and quantify the
corresponding uncertainty with regard to the fine-scale grid. In this
procedure, the high-resolution data are considered to be measure-
ments of the geophysical parameter at a small number of sparsely
distributed borehole locations throughout the aquifer volume. The
low-resolution data, on the other hand, are considered to be a
tomographic image obtained through the inversion of geophysical
survey data, which can be regarded as set of uncertain spatially
averaged measurements of the ‘‘true’’ subsurface geophysical
parameter field. The likelihood function is thus estimated from
the joint probability inferred from collocated or quasi-collocated
high- and low-resolution geophysical parameter estimates at the
borehole locations.

In the second step of the data integration approach of Ruggeri
et al. (2013a), borehole measurements of the hydraulic conductiv-
ity (primary variable) and point-by-point statistics of the high-
resolution geophysical parameter field derived from the realizations
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