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s u m m a r y

Accurate and reliable water resources planning and management to ensure sustainable use of watershed
resources cannot be achieved without precise and reliable models. Notwithstanding the highly stochastic
nature of hydrological processes, the development of models capable of describing such complex phe-
nomena is a growing area of research. Providing insight into the modeling of complex phenomena
through a thorough overview of the literature, current research, and expanding research horizons can
enhance the potential for accurate and well designed models.

The last couple of decades have seen remarkable progress in the ability to develop accurate hydrologic
models. Among various conceptual and black box models developed over this period, hybrid wavelet and
Artificial Intelligence (AI)-based models have been amongst the most promising in simulating hydrologic
processes. The present review focuses on defining hybrid modeling, the advantages of such combined
models, as well as the history and potential future of their application in hydrology to predict important
processes of the hydrologic cycle. Over the years, the use of wavelet–AI models in hydrology has steadily
increased and attracted interest given the robustness and accuracy of the approach. This is attributable to
the usefulness of wavelet transforms in multi-resolution analysis, de-noising, and edge effect detection
over a signal, as well as the strong capability of AI methods in optimization and prediction of processes.
Several ideas for future areas of research are also presented in this paper.
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1. Introduction

Characterized by high complexity, dynamism and non-stationa-
rity, hydrological and hydro-climatologic forecasting has always
presented a challenge to hydrologists who recognize its essential
role in environmental and water resources management as well
as in water-related disaster mitigation. Recent years have seen a
significant rise in the number of scientific approaches applied to
hydrologic modeling and forecasting, including the particularly
popular ‘data-based’ or ‘data-driven’ approaches. Such modeling
approaches involve mathematical equations drawn not from the
physical process in the watershed but from an analysis of concur-
rent input and output time series (Solomatine and Ostfeld, 2008).
Such models can be defined on the basis of connections between
the system state variables (input, internal and output variables)
with only a limited number of assumptions being made regarding
the physical behavior of the system. Typical examples of data-dri-
ven models are rating curves, the unit hydrograph method and var-
ious statistical models (Linear Regression; LR, multi-linear, Auto
Regressive Integrated Moving Average; ARIMA) and methods of
machine learning. The conventional black box time series models
such as ARIMA, ARIMA with exogenous input (ARIMAX) and Multi-
ple Linear Regression (MLR) are linear models and assume sta-
tionarity of the dataset. Such models are unable to handle non-
stationarity and non-linearity involved in hydrological processes.
As a result, many researchers have focused on developing models
that are able to model non-linear and non-stationary processes.

The data-driven methods of Artificial Intelligence (AI) have
shown promise in modeling and forecasting non-linear hydrologi-
cal processes and in handling large amounts of dynamicity and
noise concealed in datasets. Such properties of AI-based models
are well suited to hydrological modeling problems. Numerous AI
tools or techniques have been used, including versions of search
optimization, mathematical optimization, as well as logic-, classifi-
cation-, statistical learning- and probability-based methods (Luger,
2005). In particular, three sub-sets of AI have been widely used in
the hydro-climatologic and environmental fields:

(1) Evolutionary computation: A branch of optimization methods
that includes swarm intelligence algorithms such as Ant Col-
ony Optimization (ACO; Dorigo et al., 1996) or Particle
Swarm Optimization (PSO; Kennedy and Eberhart, 1995)
and evolutionary algorithms such as Genetic-Algorithms
(GA; Goldberg, 2000), Gene-Expression Programming
(GEP), and Genetic-Programming (GP; Koza, 1992).

(2) Fuzzy logic: Fuzzy systems (Zadeh, 1965) can be used for
uncertain reasoning, which provide a logic perspective in
AI techniques.

(3) Classifiers and statistical learning methods: These models
employ statistical and machine-learning approaches. The
most widely used classifiers are Neural Networks (NNs;
Haykin, 1994), kernel methods such as the Support Vector
Machine (SVM; Vapnik, 1995), k-nearest neighbor algo-
rithms such as Self-Organizing Map (SOM; Kohonen,
1997), Gaussian mixture model, naive Bayes classi-
fier, and decision tree. NNs, the predominant AI method,
are used in hydrology via two approaches: (i) supervised,

including acyclic or feed-forward NNs (where the signal
passes in only one direction) and recurrent NNs (which
allow feedback), and (ii) unsupervised (e.g., SOM).

Among the broader applications of AI methods, GA, GP, Fuzzy,
NNs, and SVM are widely used in different fields of hydrology.
Since their emergence in hydrology, the efficient performance of
AI techniques such as data-driven models has been reported over
a wide range of hydrological processes (e.g., precipitation,
stream-flow, rainfall–runoff, sediment load, groundwater, drought,
snowmelt, evapotranspiration, water quality, etc.). The number of
researchers active in this area has increased significantly over the
last decade, as has the number of publications. Several dozen suc-
cessful applications for hydrological process modeling (e.g.,
stream-flow, rainfall–runoff, sediment, groundwater, water qual-
ity) using ANN, Fuzzy, GP, GA, and SVM have been reported, with
some examples listed in Table 1.

Despite the flexibility and usefulness of AI-based methods in
modeling hydrological processes, they have some drawbacks with
highly non-stationary responses, i.e., which vary over a wide scale
of frequencies, from hourly to multi-decadal. In such instances of
‘seasonality’, a lack of input/output data pre/post-processing,
may not allow AI models to adequately handle non-stationary data.
Here, hybrid models which combine data pre/post-processing
schemes with AI techniques can play an important role.

Hybrid hydrological models may take advantage of black box
(here AI-based) models and their ability to efficiently describe
observed data in statistical terms, as well as other prior informa-
tion, concealed in observed records. The hybrid models discussed
here represent the joint application of AI-based methods with
the wavelet transform to enhance overall model performance.

As an advance in signal processing, wavelet transforms can reli-
ably obviate AI model shortcomings in dealing with non-stationary
behavior of signals. A mathematical technique useful in numerical
analysis and manipulation of multidimensional signal sets, wavelet
analysis provides a time-scale representation of the process and of
its relationships. Indeed, the main property of the wavelet trans-
form is its ability to provide a time-scale localization of a process.
The wavelet transform has attracted significant attention since its
theoretical development in 1984 (Grossmann and Morlet, 1984). A
number of recent hydrological studies have implemented wavelet
analysis (e.g., Adamowski and Sun, 2010; Kim and Valdes, 2003;
Kisi, 2009a,b, 2010; Nourani et al., 2009a,b, 2011; Maheswaran
and Khosa, 2012a; Partal and Kisi, 2007; Sang, 2012; Tiwari and
Chatterjee, 2010; Zhou et al., 2008).

The Wavelet transform is applicable in extracting nontrivial and
potentially useful information, or knowledge, from the large data
sets available in experimental sciences (historical records, reanaly-
sis, global climate model simulations, etc.). Providing explicit infor-
mation in a readable form, it can be used to solve diagnostic,
classification or forecasting problems. In a review of the applica-
tions of the wavelet transform in hydrologic time series modeling,
Sang (2013a) highlighted the multifaceted information that can be
drawn from such analysis: characterization and understanding of
hydrologic series’ multi-temporal scales, identification of seasonal-
ities and trends, and data de-noising. Therefore, the ability of
the wavelet transform to decompose non-stationary signals into
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