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s u m m a r y

A new approach is presented to construct daily gridded precipitation fields with high spatial resolution
by fusing gauge precipitation observations and existing gridded precipitation, including remote sensing
precipitation products and reanalysis data. The approach comprises of the following two steps: first,
gauge observations are used as the response variable, and a bivariate thin-plate smoothing spline and
an existing gridded precipitation field are used as explanatory variables, to estimate the precipitation
trend surface which is better than using the gridded precipitation field only; then the Cressman weight
is modified and applied to correct the correlated residual field to ensure the interpolated precipitation is
close to observations. An approach for estimating the error covariance matrix of the interpolated precip-
itation field is also provided.

An observed daily precipitation dataset from New Zealand is then applied to validate the proposed
approach. The results suggest that the proposed interpolation approach can produce precipitation sur-
faces with high spatial resolution and smaller interpolation errors in both data sparse and data dense
areas.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Daily gridded precipitation data with high spatial resolution are
required to drive distributed hydrological models (Xie et al., 2007).
An estimation of precipitation based solely on gauge networks is
hardly optimal (Haberlandt, 2007). Recently, satellite data have
been frequently used in precipitation modeling (Arkin and Xie,
1994; Chen and Dudhia, 2001; Robock et al., 2003; Xie and Arkin,
1995; Yu et al., 1999). Despite the high spatial resolution of satel-
lite data, there is often a large space–time variable bias in satellite
precipitation estimates. To improve the quality of the estimation of
daily precipitation, a better strategy is to combine gauge observa-
tions and satellite precipitation by applying reliable interpolation
methods (Adler et al., 2003; Janowiak and Xie, 1999; Shen et al.,
2010; Xie and Arkin, 1997; Xie and Xiong, 2011; Jones et al., 2009).

Basically, there are two approaches for merging the gauge
observations and satellite precipitation data. The first approach is
to fit a partial thin-plate smoothing spline model to the gauge data
with the satellite data as a covariate, and applying the least cross
validation principle to estimate the precipitation field (e.g. Basher

and Zheng, 1998). An advantage of this approach is that the error in
the data sparse area is minimized, because the least cross valida-
tion principle is applied (Wahba, 1990). However, fitting a smooth-
ing spline could cause the residuals to be significantly larger than
the range of the observation error. In other words, the estimation
error in data dense areas is too large. In this situation, the interpo-
lated surface often looks physically unreasonable in data dense
areas.

The second approach is to treat the satellite precipitation as a
trend surface (also called the ‘background’ or ‘first guess’) and to
apply the Simple Kriging method to correct the correlated residual
field (e.g. Chen et al., 2002; Kyriakidis et al., 2001). An advantage of
this approach is that the fitted precipitation values are close to
observations as a result of residual correction. That is, the estima-
tion error in data dense areas can be satisfactory. However, the
error in the data sparse area is usually larger than that derived
by the first approach, because the satellite precipitation is a poorer
trend surface than that produced by the first approach. Another
disadvantage is that, in Simple Kriging theory, the residuals are
assumed to be Gaussian (Martin and Simpson, 2005), but this is
generally not the case for daily precipitation data.

In this paper, a new approach is proposed by modifying the sec-
ond approach described above. First, the trend surface is changed
from the satellite precipitation to the surface constructed by partial
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smoothing spline. Then the traditional Cressman weight is modi-
fied and applied to correct the correlated residual field. Since the
prediction error of the trend surface generated by partial thin-plate
smoothing spline with the satellite precipitation as a covariate is
generally less than that of the satellite precipitation only, the error
of the trend surface is reduced. Besides, the residual correction
using Cressman weight does not require Gaussian residuals, so it
could be a better method to correct correlated residuals of precip-
itation data than the Simple Kriging correction. Finally, since the
error variance of the spline can be estimated, it can be used to esti-
mate the error covariance matrix of the corrected precipitation
field.

In this study, interpolation approaches are validated using
observations only, because the true precipitation is only available
at the observation network. The selected interpolation approach
is then applied to construct a precipitation field with very high spa-
tial resolution (for example 0.01� � 0.01�), such that the observed
precipitation intensity at a gauge site is close enough to the true
precipitation intensity in the grid box which contains the gauge
site. Finally, the interpolated precipitation fields can be scaled to
lower resolutions, for example 0.05� � 0.05�.

The proposed approach is demonstrated using a New Zealand
daily precipitation dataset. The result shows that the proposed ap-
proach is indeed better than the other two, in the sense of smaller
errors in both data dense and sparse areas.

This paper is arranged in 6 sections. The data and methodology
used in this study are documented in Sections 2 and 3 respectively.
The main results of the application of this methodology are stated
in Section 4. The discussion and the conclusions are included in
Sections 5 and 6 respectively.

2. Data

Daily precipitation data at about 650 rainfall gauges (see Fig. 1
for their positions) over New Zealand from 2007 to 2009 were sup-

plied by the National Institute of Water and Atmospheric Research
of New Zealand. For computational efficiency, the dataset was di-
vided into two regions: the North Island and the South Island
(see Fig. 1 for more details).

The NOAA CPC Morphing Technique data (CMORPH, with a res-
olution of 0.25� and 3-hourly, Joyce et al., 2004) were also used in
this study. CMORPH is a method that produces global precipitation
estimates from passive microwave and infrared data. CMORPH
exhibits excellent skill in depicting the spatial patterns of precipi-
tation, especially those associated with orographic effects (Xie
et al., 2007).

3. Methodology

3.1. Trend surface

In this study, the thin-plate smoothing spline (e.g. Hancock and
Hutchinson, 2006; Wahba, 1990; Zheng and Basher, 1995) is used
for estimating a precipitation trend surface, with CMORPH precip-
itation as a covariate:

pðxÞ ¼ f ðxÞ þ a � CðxÞ þ eðxÞ ð1Þ

where x is a location in a region, p is the observed precipitation at a
time step, C(x) is the CMORPH data for the grid which contains x, f is
a bivariate thin-plate smoothing spline (see Eq. (2.4.9) in Wahba,
1990), a is a regression coefficient, and e is the residual with spa-
tially invariant variance r2 .

For every day, the coefficients of the spline f, a and the residual
variance r2 are estimated by fitting Eq. (1) to the daily precipita-
tion data. The routine ‘‘gam’’ in the R package ‘‘mgcv’’ (Wood,
2001; Wood and Augustin, 2002) is used to achieve this goal. Once
these parameters are estimated, the estimated value of precipita-
tion at any location x is also derived by using the routine ‘‘predict’’
in the R package ‘‘mgcv’’.

3.2. Corrected fields

Residuals estimated by the partial thin-plate smoothing spline
often fall outside the range of the observation error, which is con-
sidered as the major disadvantage of smoothing spline approaches.
In order to improve the precipitation interpolation accuracy near
gauge sites, residual correction may be necessary.

In this paper, the Cressman weight (Stephens and Stitt, 1970) is
modified for the correction of the trend surface. For more details,
the fitted precipitation at any site x is corrected to:

paðxÞ ¼ pbðxÞ þ
X

j

ðpoðxjÞ � pbðxjÞÞ � ðw2
j ðxÞ

X
k

wkðxÞÞ
,

ð2Þ

where po is the observed precipitation and pb is the estimated trend
surface by Eq. (1); the subscripts j and k run over the gauge sites
around the site x within the influence radius R; wj is defined as:

wjðxÞ �
R2�d2

j ðxÞ
R2þd2

j ðxÞ
0 6 djðxÞ < R

0 djðxÞP R

8<
: ð3Þ

where dj(x) is the Euclidian distance between sites x and xj. It is
worth mentioning that, in order to improve the smoothness and
accuracy of the corrected precipitation field, the weight in Eq. (2)
is chosen as ðw2

j ðxÞ=
P

kwkðxÞÞ (e.g. Zhang et al., 2009) rather than
ðwjðxÞ=

P
kwkðxÞÞ (e.g. Stephens and Stitt, 1970). More detailed dis-

cussions are documented in Appendix A. The error statistics for cor-
rected precipitation are documented in Appendix B (refer to Fig. 2
for the flow chart for constructing the daily precipitation field).
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Fig. 1. Location of rainfall gauges and two regions in New Zealand.
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