
Journal of Systems Architecture 68 (2016) 17–37

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

An OpenCL software compilation framework targeting an SoC-FPGA

VLIW chip multiprocessor

Samuel J. Parker, Vassilios A. Chouliaras ∗

Wolfson School, Loughborough University, Loughborough, LE11 3TU, UK

a r t i c l e i n f o

Article history:

Received 12 October 2015

Revised 2 June 2016

Accepted 5 June 2016

Available online 15 June 2016

Keywords:

OpenCL

FPGA

Heterogeneous computing

Multi-core

Compilation

a b s t r a c t

Modern systems-on-chip augment their baseline CPU with coprocessors and accelerators to increase

overall computational capability and power efficiency, and thus have evolved into heterogeneous multi-

core systems. Several languages have been developed to enable this paradigm shift, including CUDA and

OpenCL. This paper discusses a unified compilation environment to enable heterogeneous system design

through the use of OpenCL and a highly configurable VLIW Chip Multiprocessor architecture known as

the LE1. An LLVM compilation framework was researched and a prototype developed to enable the ex-

ecution of OpenCL applications on a number of hardware configurations of the LE1 CMP. The presented

OpenCL framework fully automates the compilation flow and supports work-item coalescing which bet-

ter maps onto the ILP processor cores of the LE1 architecture. This paper discusses in detail both the

software stack and target hardware architecture and evaluates the scalability of the proposed framework

by running 12 industry-standard OpenCL benchmarks drawn from the AMD SDK and the Rodinia suites.

The benchmarks are executed on 40 LE1 configurations with 10 implemented on an SoC-FPGA and the

remaining on a cycle-accurate simulator. Across 12 OpenCL benchmarks results demonstrate near-linear

wall-clock performance improvement of 1.8 × (using 2 dual-issue cores), up to 5.2 × (using 8 dual-issue

cores) and on one case, super-linear improvement of 8.4 × (FixOffset kernel, 8 dual-issue cores). The

number of OpenCL benchmarks evaluated makes this study one of the most complete in the literature.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

State-of-the-art silicon technology nodes empowered VLSI de-

signers to integrate complex functionality on a single chip with

such advanced Systems-on-Chip (SoC) incorporating multiple di-

verse (Heterogeneous) processing engines and connected via nu-

merous, high bandwidth, point-to-point links. These engines are

supplied with data by hundreds of local memory blocks under the

control of Direct Memory Access (DMA) engines. On this bespoke

computing substrate there is the implicit requirement that millions

of lines of both legacy and new application code will run efficiently

with both software and hardware components expected to be de-

livered to market under very tight deadlines. Further complications

such as the substantial non-recurrent costs involved and verifica-

tion closure at tape-out make state-of-the-art SoC design inacces-

sible to all but the largest of organizations.

In parallel, industry witnesses a revolution in performance and

capability of Field-Programmable Gate Arrays (FPGAs) with the

∗ Corresponding author.

E-mail address: v.a.chouliaras@lboro.ac.uk (V.A. Chouliaras).

leading vendors (Xilinx and Altera, now Intel) consistently deliver-

ing high capacity programmable silicon incorporating hundreds of

embedded (hard-wired) blocks. These include memory controllers,

DSPs, clocking infrastructure, high-throughput interfaces (PCIe) and

networking capability (Interlaken), supported by very high speed

differential I/O (SERDES). The vendors supply a wealth of silicon

intellectual property (IP) such as soft processors and more re-

cently, high-value hardened IP (ARM A9 SMP subsystem in the

Zynq [1] and Cyclone V SoC device families respectively), advanced

interconnect (AXI4) and a number of other blocks covering ev-

ery conceivable application. What is even more noteworthy is that

this rich ecosystem, along with proprietary Electronic Design Au-

tomation (EDA) tools is provided for (nearly) free to the FPGA sil-

icon customers. To address the design and verification bottleneck

of very complex current (28 nm) and expected (16/14 nm) SoC-

FPGAs vendors increasingly embrace a software-centric design ap-

proach based on Electronic System Level Methodologies (ESL). Po-

tentially disruptive ESL technologies such as Behavioural Synthesis

(AutoESL [2] from Xilinx and C2H from Altera and very recently

tools such as SDSoC/SDAccel and AOCL [3] respectively) seem to

be displacing established Register-Transfer-Level (RTL) methodolo-

gies when targeting these latest devices.

http://dx.doi.org/10.1016/j.sysarc.2016.06.003

1383-7621/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.sysarc.2016.06.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2016.06.003&domain=pdf
mailto:v.a.chouliaras@lboro.ac.uk
http://dx.doi.org/10.1016/j.sysarc.2016.06.003

18 S.J. Parker, V.A. Chouliaras / Journal of Systems Architecture 68 (2016) 17–37

With the introduction of General-Purpose Graphics Program-

ming Units (GPGPUs) and the release of the proprietary CUDA API

[4] from NVIDIA, a trend towards the universal use of such devices

in a number of market segments (spanning the continuum from

High Performance Computing (HPC, [5]), Desktop and all the way

to embedded and mobile computing) is emerging. The Open Com-

pute Language (OpenCL, [6]) was proposed as an open standard API

for general-purpose computing across CPUs, GPGPUs and other ac-

celerators in response to CUDAs performance advantage on NVIDIA

hardware. This was standardized by the Khronos Group and nowa-

days, OpenCL drivers are offered by all the major graphic proces-

sor designers such as AMD, Intel, and Qualcomm. 1 Unlike CUDA,

OpenCL is target agnostic and this has enabled the emergence of

an ecosystem around not only GPGPUs but also CPUs and FPGAs as

will be discussed in Section 2 .

This research is motivated by the ever-increasing adoption of

the Single Instruction Multiple Thread (SIMT) processing paradigm

(via OpenCL) for advanced FPGA design and this paper presents

an automated compilation framework that enables parallel com-

putation, through the execution of OpenCL kernels 2 on a config-

urable VLIW Chip Multiprocessor (CMP) [7,8] . The LE1 architec-

ture (Section 3.1) is both configurable and extensible and is de-

signed for embedded DSP applications on FPGA and standard-cell

silicon. The researched software framework is in the form of a user-

space driver which encompasses an LLVM-based compiler back-

end as well as a source-to-source transformer that modifies the

OpenCL kernels to execute more effectively on the LE1. A high-level

view of the researched software/hardware framework is shown in

Fig. 1 . From the figure, inputs to the framework are the kernel

and the machine description (machine.xml) which specifies micro-

architectural parameters of the LE1 CMP instance. The kernel is

transformed and compiled with a custom LLVM back-end devel-

oped for the LE1 resulting in a number of assembly (.s) files. These

are combined into two binaries (iram.h, dram.h) with the instruc-

tion stream and the initialized data section loaded onto the proces-

sor via the API (executing on the ARM host). The final executable

is loaded onto the FPGA target via the Xilinx Microprocessor De-

bugger (xmd) tool. At the same time, the tool-chain is used to val-

idate the LE1 CMP at Register Transfer Level (RTL) using the flow

depicted in the bottom half of Fig. 1 .

The framework is capable of targeting many hardware config-

urations (as specified in the machine.xml) and executes OpenCL

kernels both on the LE1 CMP, mapped onto a Zynq z7045 device

(Xilinx zc706 development board), as well as on a highly cycle-

accurate simulator. We evaluate the scalability of our approach us-

ing 12 OpenCL benchmarks from the AMD

3 and Rodinia [9] bench-

mark suites (Section 4.1.1), across 40 machine configurations, mak-

ing this the largest OpenCL study reported in academic literature

to date.

The paper is organized as follows: Section 2 presents the

background, state-of-the-art and motivation behind this re-

search. The proposed software/hardware approach is introduced

in Section 3 and the detailed methodologies are discussed in

Section 4 . Section 5 presents the execution results from applying

our framework on the chosen OpenCL benchmarks and includes a

1 Officially conformant devices: http://www.khronos.org/conformance/adopters/

conformant-products#opencl
2 An OpenCL kernel is a function executed by multiple processing elements on

a 1D/2D/3D application space. Kernels are C-based and their arguments are aug-

mented with memory space specifiers (private, local and global). OpenCL enables

the execution of hundreds/thousands of such functions across multiple processing

elements (PEs) resulting in substantial performance improvement compared to the

sequential version of the application. Kernels are grouped into ’Work-groups’ (WG)

and multiple such work-groups constitute a Compute Unit (CU).
3 http://developer.amd.com/tools- and- sdks/opencl- zone/

amd- accelerated- parallel- processing- app- sdk

thorough discussion of our findings. Section 6 draws conclusions

on the efficiency of our solution and this paper concludes with a

number of suggestions for future software and hardware improve-

ments in Section 7 .

2. Motivation and background

2.1. Motivation

The majority of accelerators currently used are deeply multi-

threaded, many-core systems such as GPGPUs and Intel’s MIC ar-

chitecture. GPGPUs offer higher performance and energy-efficiency

compared to commodity x86 CPUs. However, the US Department

of Energy has identified custom designs and the use of co-design

as very important in producing even more efficient computers [10] .

Co-design can be used to create application specific instruction set

extensions for deeply-embedded configurable processors and op-

timize the design of heterogeneous multi-core SoCs for more ef-

ficient computing [11] ; a key reason for its use is that the GPGPU

execution model is not suitable for all types of problems. The latter

relies on an implicit SIMD execution model (SIMT) where the con-

current execution of hundreds of threads is used to mask stalls and

long latency operations. GPGPUs achieve maximum throughput

when the executing threads maintain the same program counter

(PC), allowing the single-issued instruction to execute with differ-

ent data across hundreds of data-paths. This also allows threads

to issue memory operations with high spatial locality resulting

in data traffic optimization in the memory hierarchy. These con-

straints have little effect on highly-regular graphic shader pro-

grams, but throughput can dramatically decrease in the presence

of control-flow with bespoke solutions proposed to alleviate thread

divergence [12,13] . System designers have looked into building sys-

tems with many cores that are not multi-threaded [14,15] , but this

approach still does not address the fact that not all problems can

be solved effectively in the same manner.

FPGAs, by virtue of their user programmability and dense float-

ing point performance (Altera Arria10 and Stratix10 families), are

in a unique position of being adopted as universal OpenCL targets

and previous generations of these devices have been shown to be

faster than GPGPUs for some algorithms [16] . There are, however,

major barriers in their widespread adoption as accelerators relat-

ing to the skill-set required to design, optimize and verify designs

as well as long FPGA tools compilation times (hours to day/s). The

latter makes them completely unsuitable for runtime OpenCL ker-

nel compilation which is one of the cornerstones of the OpenCL

API. High-level synthesis (HLS) has addressed these issues to a de-

gree by offering higher levels of abstraction with more commonly

used languages, such as C, SystemC and more recently, OpenCL.

This does not address the issue of place and route time, and for

absolute performance VLSI engineers still design at RT level.

The main motivation behind the researched software frame-

work is the need to offer a fully programmable compute engine as

a solution between fixed many-core systems such as the Intel MIC

and the very fine-grained control when targeting SoC-FPGAs, while

eliminating branch-divergence through source-transformation and

ILP compilation and alleviating the substantial FPGA place-and-

route runtimes. This is achieved through our core contributions

which include the instantiation on the SoC-FPGA of the LE1

CMP and the subsequent on-line compilation of OpenCL kernels

by our framework targeting the LE1 silicon. We also note that

the LE1 is a capable MIMD accelerator, can easily accommodate

shared-memory programming models such as OpenMP and POSIX

Threads (PThreads) [17] and due to the proposed source transfor-

mation/compilation flow (Section 4), it does not suffer software-

incurred performance inefficiencies due to thread divergence. The

http://www.khronos.org/conformance/adopters/conformant-products#opencl
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk

Download English Version:

https://daneshyari.com/en/article/457608

Download Persian Version:

https://daneshyari.com/article/457608

Daneshyari.com

https://daneshyari.com/en/article/457608
https://daneshyari.com/article/457608
https://daneshyari.com

