
Journal of Systems Architecture 68 (2016) 51–64 

Contents lists available at ScienceDirect 

Journal of Systems Architecture 

journal homepage: www.elsevier.com/locate/sysarc 

A unified framework for designing high performance in-memory and 

hybrid memory file systems 

Xianzhang Chen 

a , Edwin H.-M. Sha 

a , ∗, Qingfeng Zhuge 

a , Weiwen Jiang 

a , Junxi Chen 

a , 
Jun Chen 

a , Jun Xu 

b 

a College of Computer Science, Chongqing University, Chongqing 40 0 044, China 
b Huawei Shannon Lab, Beijing, China 

a r t i c l e i n f o 

Article history: 

Received 30 November 2015 

Revised 31 March 2016 

Accepted 22 May 2016 

Available online 24 May 2016 

Keywords: 

In-memory file systems 

Hybrid memory file systems 

Non-volatile memory 

Flash memory 

Performance 

a b s t r a c t 

The emerging non-volatile memory technologies provide a new choice for storing persistent data in mem- 

ory. Therefore, file system structure needs re-studying and re-designing. Our goal is to design a frame- 

work that gives high-performance in-memory file accesses and allows a file whose data can be stored 

across memory and block device. This paper presents a novel unified framework for in-memory and hy- 

brid memory file systems based on the concept that each file has a contiguous “File Virtual Address 

Space”. Within this framework, the file access for in-memory data can be efficiently handled by address 

translation hardware and the virtual address space of file. The file accesses for data in block devices are 

handled by a dedicated page fault handler for file system. A file system called Hybrid Memory File Sys- 

tem (HMFS) is implemented based on this framework. Experimental results show that the throughput 

of HMFS approaches the memory bus bandwidth in best cases. Compared with in-memory file systems, 

HMFS reaches 5 times, 2.1 times, and 1.6 times faster than EXT4 on Ramdisk, RAMFS, and PMFS, respec- 

tively. Compared with EXT4 on SSD and EXT4 using page cache, HMFS also achieves 100 times and tens 

of times performance improvement, respectively. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The growing real-time requirements for data processing push 

the development of in-memory computing. Currently, many plat- 

forms and applications directly store data in memory to close the 

huge gap between memory and traditional storage, such as HANA 

[1] and Spark [2] . Existing DRAM-based computing systems need 

to back up in-memory data on persistent storages, such as mag- 

netic disks and flash memory. The backup procedures may cause 

large overhead and degrade the system performance. 

Recently, emerging Non-Volatile Memory (NVM) [3–5] tech- 

niques provide opportunities for reserving data in high speed 

memory persistently. Thus, no backups are required. NVMs [6–

8] show advantages as the promising candidate of persistent stor- 

age. For example, domain wall memory [8] and PCM [9] show high 

density, near-DRAM speed, byte-addressable, shock resistance, and 

low power leakage. The experiments show that the file access for 

∗ Corresponding author. 

E-mail addresses: xzchen.cq@gmail.com (X. Chen), edwinsha@gmail.com 

(E.H.-M. Sha), qfzhuge@gmail.com (Q. Zhuge), jiang.wwen@gmail.com (W. 

Jiang), cjxsimon@gmail.com (J. Chen), newdays.chenjun@gmail.com (J. Chen), 

xujun09@huawei.com (J. Xu). 

in-memory data can be 100 times faster than the file access for 

the data stored in flash memory. Therefore, an in-memory file sys- 

tem can be designed to take advantages of NVM for achieving high 

performance file accesses. 

The in-memory file systems, however, have a size problem es- 

pecially for large files. The NVM may be too expensive to reserve 

all the data in a system. It is also not necessary to reserve all 

the data of a large file in NVM for many applications. Therefore, 

we need to use hybrid storages in a system, including NVM, flash 

memory, and magnetic disk, to efficiently maintain persistent data. 

To the authors’ knowledge, none of the existing in-memory file 

systems can allow the primary data of a single file are stored 

across memory and other devices. 

As the proposed file system enables a file to be stored across 

memory and block devices, the size problem of memory can be al- 

leviated. Based on the design, the cold part of a file can be stored 

in block devices while the hot part is stored in the memory. Com- 

pared with the existing in-memory file systems, we can share the 

memory for more files in the proposed file system. The applica- 

tions can easily benefit from the high performance of the memory 

and the large capacity of block devices simultaneously. 

In this paper, our goal is two-fold. First, we try to design a 

framework to provide highly efficient file accesses for in-memory 

file systems. The framework is designed to fully exploit the 
http://dx.doi.org/10.1016/j.sysarc.2016.05.004 

1383-7621/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.sysarc.2016.05.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2016.05.004&domain=pdf
mailto:xzchen.cq@gmail.com
mailto:edwinsha@gmail.com
mailto:qfzhuge@gmail.com
mailto:jiang.wwen@gmail.com
mailto:cjxsimon@gmail.com
mailto:newdays.chenjun@gmail.com
mailto:xujun09@huawei.com
http://dx.doi.org/10.1016/j.sysarc.2016.05.004


52 X. Chen et al. / Journal of Systems Architecture 68 (2016) 51–64 

benefits of NVM. Second, we try to extend the framework from 

memory to block devices such that the primary data of a single 

file can be stored across hybrid storages. Within the framework, a 

hybrid memory file system is expected to benefit from both the 

high speed of NVM and the large capacity of block devices. 

Considering the file accesses for in-memory file data, the chal- 

lenge is how to efficiently locate the physical locations of data 

pages using memory management hardware. We propose a novel 

framework of “file virtual address space” for highly efficient file 

accesses over the file data in the memory. In this framework, each 

file has its own continuous virtual address space. For a file in the 

framework, the data pages are organized by a hierarchical page ta- 

ble dedicated to the file, which is called “file page table”. When a 

file is opened, its file virtual address space is embedded into the 

kernel virtual address space. Different from the traditional file sys- 

tems, data accesses to any location of the opened file in the frame- 

work are performed efficiently by the hardware Memory Manage- 

ment Unit (MMU) rather than searching the metadata structure by 

software. The virtual address space of a file is established by in- 

serting a few pointers of the file page table into the corresponding 

entries of the kernel page table. 

Considering the file accesses for file data stored on hybrid stor- 

ages, the challenging problem is how to efficiently decide if the file 

data is in the memory or the block device. The proposed frame- 

work of “file virtual address space” can be extended and applied 

to solve the problem. In the unified framework, each file also has 

its own continuous virtual address space. For a single file in the 

unified framework, it is possible to store part of its data on the 

main memory and the rest on the block device. The data pages on 

the main memory and the data blocks on the block device of the 

file, however, are organized by a same file page table dedicated to 

the file. For in-memory file data, the file accesses take advantages 

of the hardware MMU in CPU with high performance. For the file 

data stored on the block devices, a dedicated page fault handler is 

designed to efficiently complete the file accesses. 

A new file system named Hybrid Memory File System (HMFS) 

is designed and implemented based on the new unified frame- 

work. HMFS is implemented in Linux to support general file sys- 

tem interfaces, parallel file accesses of multiple threads, and vari- 

ous executables. We evaluate the performance of HMFS with stan- 

dard benchmarks. Experimental results show that the performance 

of both sequential and random reads/writes of HMFS are signifi- 

cantly improved compared with a set of existing file systems, in- 

cluding EXT4 on Ramdisk [10] , RAMFS [11] , and the state-of-the- 

art in-memory file system PMFS [12] . The throughput of HMFS ap- 

proaches the memory bus bandwidth in the best cases. To the au- 

thors’ knowledge, this is the best known result for file systems in 

the literature. 

The main contributions of this paper include: 

• We propose a new unified framework of file virtual address 

space for designing high-performance in-memory file systems 

and hybrid memory file systems for memory and block devices. 

Base on this framework, each file has its own continuous virtual 

address space. A file system can take advantages of hardware 

MMU to achieve highly efficient file accesses. 

• We design and implement a high-performance hybrid memory 

file system, HMFS, based on the proposed framework. A hierar- 

chical file page table is designed to organize file data on mem- 

ory or block devices. The proposed HMFS uses MMU hardware 

and a dedicated page fault handler for fast address mapping 

and file access. 

• Experiments are conducted to compare the throughput of HMFS 

with other file systems, including EXT4 on Ramdisk, RAMFS, 

and PMFS. Experimental results show that HMFS outperforms 

these file systems. The throughput of HMFS even approaches 

the memory bus bandwidth in the best cases. Compared with 

EXT4 on SSD and EXT4 using page cache, HMFS also shows sig- 

nificant performance improvement. 

The rest of the paper is organized as follows. The related works 

are described in Section 2 . We present the design framework and 

implementation of HMFS in Section 3 . We then evaluate the per- 

formance of these file systems in Section 4 . Finally, Section 5 con- 

cludes the paper. 

2. Related work 

NVM has been widely used in different levels of storage sys- 

tem designs. In the device level, due to the higher read/write speed 

and the better wear property than flash memory, NVM are used as 

disk cache to achieve higher performance and extend the lifetime 

of flash memories [13,14] . Such an improved device can be inte- 

grated into the hybrid file system. 

In the level of system software, NVM is generally used to 

store file data or metadata. The idea of using memory as stor- 

age has long been investigated, such as RAMFS [11] , TMPFS [15] , 

and Phoenix [16] . A typical type of file system using NVM is in- 

memory file systems. In-memory file systems use NVM as the sole 

permanent storage for the whole file system [12,17–21] . A direct 

approach is to deploy existing block-based file systems on NVM, 

such as the mobile computing systems with Linux-like operating 

systems. For these file systems, the optimizations for the space uti- 

lization of NVM has been studied in [19,20,22] . BPFS [17] uses a 

tree to organize the file data. BPFS developed atomic and ordered 

update techniques for NVM. MRAMFS [18] is mainly designed for 

small files. PMFS [12] is the stat-of-the-art in-memory file system. 

PMFS uses a B-tree to organize the data pages of a file. 

These in-memory file systems cannot fully utilize the hardware 

MMU to achieve high performance. They need to search meta- 

data structures for the physical locations of file data by software. 

SCMFS [21] utilizes contiguous virtual address space for file ac- 

cesses. However, SCMFS has large overhead for the management of 

the mapping table and the virtual address space of the files. In this 

work, we present a framework of file virtual address space that can 

fully take advantages of MMU hardware with nearly zero overhead. 

Another type of file system using NVM is hybrid memory file 

system. On one hand, many previous works use NVM as a buffer 

for file data or metadata on block devices, such as magnetic disk 

and Solid State Disks (SSDs). In [23–25] , the NVM is used to cache 

the metadata or hot data written to block devices. The dirty data 

stored in NVM-based cache are flushed back to block devices only 

when the cache is full. On the contrary, the dirty data stored in 

volatile cache should be periodically backed up. Thus, the NVM- 

based cache can improve the performance of the system. On the 

other hand, many hybrid memory file systems are proposed to use 

NVM as a storage for file data or metadata. In [26–31] , all the 

metadata of a file system are reserved in the NVM. The file data 

are stored on block devices. The performance of file accesses is 

improved as the time for search metadata structures is reduced. 

However, these file systems do not fully utilize the fast speed of 

NVM and the hardware MMU to further improve the performance 

of data accesses. TridentFS [32] proposes a framework to place file 

data and metadata on hybrid storages, such as NVM, SSD, and mag- 

netic disk. The metadata structure of TridentFS is a multi-level in- 

dex and the file accesses should also search through the index by 

software. Existing in-memory or hybrid memory file systems either 

stores the whole file in the memory or in the block device. None 

of these file systems allow a file whose data can be stored across 

memory and block device. 



Download English Version:

https://daneshyari.com/en/article/457610

Download Persian Version:

https://daneshyari.com/article/457610

Daneshyari.com

https://daneshyari.com/en/article/457610
https://daneshyari.com/article/457610
https://daneshyari.com

