
Resolving priority inversions in composable conveyor systems

Shivakumar Sastry a,⇑, Aniruddha Gokhale b

a Department of Electrical and Computer Engineering, University of Akron, Akron, OH 44325-3904, USA
b Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37325, USA

a r t i c l e i n f o

Article history:
Received 17 September 2013
Received in revised form 4 February 2014
Accepted 25 February 2014
Available online 7 March 2014

Keywords:
Real-time systems
Priority inversion
Composable conveyors
Networked systems

a b s t r a c t

The well known problem of priority inversions that occurs in classical real-time systems also manifests in
decentralized cyber-physical systems. Using a specific example of composable conveyor systems, we
show how priority inversions hinder the transport of entities through the conveyor systems. We present
a novel adaptation of the classical priority inheritance protocol for resolving these cyber-physical priority
inversions. While the approach resolves cyber-physical priority inversions, the structure and constraints
of the conveyor systems cause the jitter associated with the end-to-end latency of the highest priority
parts to increase. Further, these constraints also limit the applicability of the classical priority ceiling pro-
tocol in this class of cyber-physical systems. Simulation results demonstrate the correctness and reason-
able communication overhead of the approach.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Composable, or reconfigurable, conveyor systems (CCS) are rep-
resentative cyber-physical systems that capture the spatio-tempo-
ral interactions that can occur in a variety of emerging automation
systems, particularly in the area of material handling. These cyber-
physical systems are flexibile, easy to use, and can be dynamically
reconfigured to assure real-time Quality of Service (QoS) in opera-
tional theaters such as warehouses, manufacturing lines, package
sorting facilities (e.g., FedEx and UPS), or front-line logistics for
future military deployments. CCS are composed using basic build-
ing blocks that have pre-defined behaviors. These systems are
interesting to study because tasks, which involve the end-to-end
transport of an entity in the system, evolve simultaneously both
in time and space. Since these systems are well-structured, the
desired behaviors and the unintended consequences that result
from spatio-temporal interactions between tasks can be studied
in a systematic manner. The insights gained from such a study
can be applied to a large-class of cyber-physical systems.

Realizing CCS in practice is challenging. The intertwined
dynamics of the cyber-physical elements, e.g., the logic embedded
in individual micro-controllers of CCS units, the wireless transceiv-
ers and protocols for messaging and coordination between the mi-
cro-controllers in physically adjacent units, and spatio-temporal
evolution of the entities along end-to-end paths in the conveyor

system present formidable challenges for addressing several de-
sign and operational issues. For example, a CCS designer may want
to understand if a particular topology can yield a desired QoS with-
out actually having to deploy and test the system; the designer
may want to understand the robustness or resilience of the
topology with respect to one or more failures. Our recent work
[1,2] addressed some of these questions. We developed intuitive
abstractions and analysis tools to enable CCS designers to experi-
ment with different layouts and analyze the QoS that could be
achieved from the topology. In this paper, we address the issue
of priority inversions that can occur in CCS because of the spatio-
temporal interactions between tasks.

Consider a new conveyor system that must be designed to sort
packages based on their service category. For example, ‘‘next
morning delivery,’’ ‘‘next afternoon delivery,’’ or ‘‘ground delivery’’
are typical categories that are commonly used. This requirement
imposes a notion of ‘‘priority’’ on the packages that are handled
by the sorting system. Packages with different priorities arrive
via Inputs (sources) and these packages move along paths to some
Output. The paths of the conveyor system are formed by a se-
quence of physically adjacent units called Segments. Each Segment
unit comprises a belt that can move the entity from one end to the
other. One or more Segments in the system can also be incident
with Turn units. The Turn units can merge multiple upstream
paths to a single downstream path; alternatively, a Turn unit can
also fork a single upstream path to multiple downstream paths.
To improve the utilization of the units and resilience of the topol-
ogy, it is necessary for many of these Input–Output paths to over-
lap. One consequence of such overlaps is that when two paths

http://dx.doi.org/10.1016/j.sysarc.2014.02.003
1383-7621/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: ssastry@uakron.edu (S. Sastry), a.gokhale@vanderbilt.edu

(A. Gokhale).

Journal of Systems Architecture 60 (2014) 509–518

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2014.02.003&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2014.02.003
mailto:ssastry@uakron.edu
mailto:a.gokhale@vanderbilt.edu
http://dx.doi.org/10.1016/j.sysarc.2014.02.003
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


merge, low priority packages that are moving along one path can
block higher priority packages that need to use the same path for
an unbounded duration of time – thus resulting in a classical prior-
ity inversion [3]. Although the cyber-physical priority inversion
problem may not cause significant disruptions in a package sorting
facility, it will be a significant problem for assembly plants where
parts much reach their designated positions in a timely manner.

The priority inversion described above is a cyber-physical phe-
nomenon for the following reasons. As will be explained more pre-
cisely in Section 2.2, the cyber-physical priority inversion occurs
because of both the physical topology of the conveyor system
and the cyber decisions that impact the flow of entities on the sys-
tem. In fact, the cyber-physical priority inversions are caused by an
unfortunate consequence of the temporal sequence of priorities of
the arriving entities, the physical location of the Inputs where the
entities arrive on the system, the physical topology of the conveyor
system, and the temporal sequence of routing decisions made at
the different Turn units of the system. Such cyber-physical priority
inversions are further exacerbated when the system is dynamically
reconfigured because small changes to the structure can signifi-
cantly impact the QoS that can be achieved using the conveyor
system.

Classical techniques for resolving cyber-level priority inversions
in centralized (cyber-only) real-time systems are well-known. The
priority inheritance protocol (PIP) and priority ceiling protocol
(PCP) in [3] and the stack resource policy in [4] are excellent solu-
tions. In this paper we show that PIP can be effectively adapted to
resolve the cyber-physical priority inversions in CCS; on the other
hand, PCP cannot be readily adapted to address the problem.

The rest of the paper is organized as follows: Section 2 presents
the problem statement more formally and surveys related work.
We discuss the adaptation of PIP in Section 3. We show why PCP
cannot be readily adapted in Section 4. Our results and discussion
are in Section 5 and we conclude in Section 6.

2. Problem statement and related work

We now illustrate more formally how the cyber-physical prior-
ity inversion problem occurs and briefly describe the related work.
To better understand the problem statement, we first provide the
model of composable conveyors we assume in this work.

2.1. Model of composable conveyor systems

The conveyor systems we consider move entities from inputs
(I) to outputs (O). These systems are composed using two kinds
of units – Segments (S) and Turns (X ) – that have fixed behaviors
[5]. Each unit is autonomously regulated by a local microcontroller
that interacts with adjacent units over wireless links to coordinate
the transfer of entities. A Segment moves an entity over a fixed dis-
tance, in one of two assigned directions. Input and Output units are
Segments that can move entities only in one direction. A Turn has
four ports that can be configured to either bring in entities or re-
move entities. We assume that units can handle only one entity
at a time. When two or more entities simultaneously arrive at
the input ports of a Turn, only one entity is accepted by the Turn.
We assume that a Turn will not accept an entity only when it is
accepting a different entity with a higher priority. The entity that
is not accepted for transfer must wait on the unit until it is ac-
cepted for transfer; such a wait will propagate to further upstream
units because each unit can only hold a fixed number of entities.

We assume that Segments and Turns have a fixed direction that
remains unchanged and there are no failures. The underlying
directed graph of the system is acyclic. All units in the system
can handle at most one entity; however, a unit can simultaneously

transfer-in and transfer-out an entity. There are adequate buffers at
the inputs to hold entities that are not yet admitted to the system.
Recall, that multiple paths along which entities move overlap at
one or more conveyor units. A physical entity that is already on a
unit cannot be ‘‘preempted.’’ In addition, the sequence of entities
on adjacent Segments of the conveyor system cannot be physically
reordered. These three reasons collectively cause priority inver-
sions to occur as we explain below. Such inversions are inevitable
in systems where resources must be preferentially allocated to
tasks. It is, however, important to ensure that such inversion does
not occur for an unbounded duration of time.

A conveyor system can be represented as a directed graph
G ¼ ðU; EÞ. The nodes of G;ui 2 U represent the units, i.e., Segments,
Turns, Inputs, and Outputs. An edge ðui;ujÞ 2 E represents the rela-
tion that an entity can move from unit ui to unit uj. Entities that ar-
rive via input Ik 2 I are delivered to a specific output Oj 2 O along a
path

PðIk;OjÞ ¼< u1 ¼ Ik;u2; . . . ;un ¼ Oj >

where ui 2 U. Such paths can either be pre-computed when the sys-
tem cannot be reconfigured, or discovered and maintained when
the system is reconfigurable using standard shortest path algo-
rithms [6]. Since the paths merge at Turns, some of the paths may
overlap and share common units.

2.2. Cyber-physical priority inversion scenarios in composable
conveyor systems

Consider the conveyor system shown in Fig. 1. Here, three enti-
ties, namely sa

1; sb
2, and sc

3, have arrived via input I1; I2 and I3,
respectively. Suppose Segments S1 and S2 simultaneously send a
request to Turn X2 to transfer an entity. Assuming that the entities
arriving via lower numbered inputs have higher priorities, i.e.,
prioðI2Þ > prioðI3Þ;X2 must accept sb

2. Because S1 cannot accept a
new entity until its current entity is transferred out, the higher pri-
ority entity, sa

1, on X1 is blocked by the lower priority entity, sc
3, on

S1. This blocking is an expected consequence of using priorities in
the system. However, since the number of entities that can arrive
via input I2 is not bounded, priority inversion (i.e., blocking for un-
bounded time) can occur.

Using the definition of priority inversion in [3], we can infer that
a cyber-physical priority inversion occurs whenever a high priority
entity stream is intercepted by a low priority entity stream and this
latter stream is intercepted by a medium priority entity stream.
Fig. 2 illustrates one such scenario.

At unit Xm;m > 3, the low priority entity stream from Im inter-
cepts the entity stream from I1. Further downstream at X3, the en-
tity stream from I3 intercepts the entity stream from Im. In this
example, the streams from Im and I1 are merged after Xm. Since
prioðI3Þ > prioðImÞ, entities from Im can be blocked by entities from
I3 at unit X3. When the units along the path PðIm;X3Þ each have

Fig. 1. When multiple entity streams, each with a different priority, share common
conveyor units, priority inversion can occur.

510 S. Sastry, A. Gokhale / Journal of Systems Architecture 60 (2014) 509–518



Download	English	Version:

https://daneshyari.com/en/article/457621

Download	Persian	Version:

https://daneshyari.com/article/457621

Daneshyari.com

https://daneshyari.com/en/article/457621
https://daneshyari.com/article/457621
https://daneshyari.com/

