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Short-term Quantitative Precipitation Forecasting (SQPF) is critical for flash-flood warning, navigation
safety, and many other applications. The current study proposes a new object-based method, named PER-
CAST (PERsiann-ForeCAST), to identify, track, and nowcast storms. PERCAST predicts the location and rate
of rainfall up to 4 h using the most recent storm images to extract storm features, such as advection field
and changes in storm intensity and size. PERCAST is coupled with a previously developed precipitation
retrieval algorithm called PERSIANN-CCS (Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks-Cloud Classification System) to forecast rainfall rates. Four case studies
have been presented to evaluate the performance of the models. While the first two case studies justify
the model capabilities in nowcasting single storms, the third and fourth case studies evaluate the pro-
posed model over the contiguous US during the summer of 2010. The results show that, by considering
storm Growth and Decay (GD) trends for the prediction, the PERCAST-GD further improves the predict-
ability of convection in terms of verification parameters such as Probability of Detection (POD) and False
Alarm Ratio (FAR) up to 15-20%, compared to the comparison algorithms such as PERCAST.
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1. Introduction

Short-term Quantitative Precipitation Forecasting (SQPF), or
“nowcasting”, is important for a number of hydrometeorological
applications (Ganguly and Bras, 2003; Afshar et al., 2010). Both
Numerical Weather Prediction (NWP) models and extrapolation-
based techniques are widely used in SQPF. While these two methods
are different in terms of their approaches, they play an effective and
complementary role for SQPF (Golding, 1998; Ganguly and Bras,
2003; Wilson et al., 2004; Sokol, 2006; Liang et al., 2010).

Each of these methods has respective strengths and weaknesses
(Wilson et al., 2004). Despite NWP models’ applications in weather
forecasting and SQPF, they are sensitive to the initial conditions,
resolution, and assimilation algorithms (Golding, 1998). With
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high-frequency sampling of observations from new generations
of sensor networks, the ability of NWP models to provide short-
term predictions is substantially improved over the US (Benjamin
et al., 2004, 2009). Although there have been significant improve-
ments in NWP models and their broad range of applications, they
may still have some limitations. For example, NWP models are
associated with significant computational cost, which poses limita-
tions in terms of spatial domain, resolution, frequency, and the
number of ensemble members. Extrapolation-based or “data-dri-
ven-based” algorithms, however, are capable of extracting infor-
mation from the ever-increasing volume of remotely sensed data
and are reported to be capable of producing reliable forecasts with
respect to NWP models, especially within a few hours of the anal-
ysis time (Dixon and Wiener, 1993; Johnson et al., 1998; Germann
and Zawadzki, 2002, 2004; Mueller et al., 2003; Ganguly and Bras,
2003; Chiang et al., 2006; Vila et al., 2008; Zahraei et al., 2010a,
2010b; Sokol and Pesice, 2012).

Several extrapolation-based nowcasting algorithms have been
developed for hydrological applications. The Storm Cell Identifica-
tion and Tracking (SCIT) algorithm and the Thunderstorm Identifi-
cation, Tracking, Analysis, and Nowcasting (TITAN) algorithm are
two examples (Johnson et al., 1998; Dixon and Wiener, 1993).
Integration of some of these algorithms into the National Weather
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Service (NWS) Warning Decision Support System (WDSS) has been
reported (Lakshmanan et al., 2009).

Pixel- and object-based are two categories of data-driven SQPF
algorithms. There have been several proposed pixel-based quanti-
tative precipitation estimation and forecasting algorithms (Grecu
and Krajewski, 2000; Mecklenburg et al., 2000; Germann and Za-
wadzki, 2002; Montanari et al., 2006; Vant-Hull et al., 2008; Beren-
guer et al., 2011; Zahraei et al., 2011a, 2012). These algorithms
study atmospheric phenomena from an Eulerian, pixel-based per-
spective. Object-based quantitative precipitation estimation and
forecasting algorithms, which are the main focus of this paper, con-
sider storm events as individual objects (Dixon and Wiener, 1993;
Hong et al., 2004; Vila et al., 2008).

An object-based algorithm generally includes three steps: (1)
storm identification, (2) storm tracking, and (3) storm projection.
The identification and matching/tracking of each storm object at
the current time (t) with the corresponding storm in the previous
time step(s) (e.g., t — 1, t — 2, etc.) is a major challenge for nowcast-
ing and storm life-cycle studies. Storms are dynamic in terms of
intensity, texture, and geometrical characteristics. They may also
split or merge with other storms, which makes the application of
tracking algorithms very challenging (Machado and Laurent,
2004). Several object-based storm-tracking methods have been
proposed (Lakshmanan et al., 2009), including: (1) storm-matching
technique based on centroid positions (Johnson et al., 1998); (2)
storm-cell matching based upon the proposed indices of overlap-
ping pixels (Morel et al., 1997); and (3) a modified approach where
storm tracking and association has been solved as an optimization
problem (Dixon and Wiener, 1993).

These tracking techniques have not been without limitations.
For example, the centers of mass methods are not robust in pro-
cessing complex-shaped objects effectively. The overlapping tech-
nique performs well for large storm systems (e.g., Mesoscale
Convective Systems, MCSs), in which storm objects are large en-
ough to allow sufficient overlap in consecutive time steps
(Lakshmanan et al., 2009; Vila et al., 2008). However, for small-
scale thunderstorms, they cannot be tracked effectively using over-
lapping techniques. Other proposed techniques also assume that
storm objects are long-lived and large enough to be associated
with previous time steps (Lakshmanan et al., 2009). Although ob-
ject-based algorithms are effective for SQPF, they need further
improvements. As an example of newly developed object-based
nowcasting algorithms, the Forecast and Tracking the evolution
of Cloud Cluster (ForTraCC) has been proposed to identify, track,
and forecast MCSs (Vila et al., 2008). This nowcasting tool was ap-
plied to evaluate MCS evolution up to 120 min with a 30-min inter-
val over southern America.

In this study, a new object-based SQPF algorithm capable of
tracking and forecasting storms is developed and described. The
proposed algorithm, named PERCAST (PERsiann-ForeCAST), can
identify and track storms from GOES-IR (infrared) cloud-top
long-wave Brightness Temperature (BT) data. The term “storm”
presents all atmospheric phenomena with cloud BT less than a
specific threshold (e.g., 240K) and area larger than 256 km?.
The performance of PERCAST is verified against both radar and
satellite data and compared with two comparison SQPF models:
(1) PERsistence (PER), and (2) WDSS-II (Warning Decision Support
System-Integrated Information). The PER assumes that the future
rainfall field is equal to the last available scan. The WDSS-II,
developed by the National Severe Storm Laboratory (NSSL) and
the University of Oklahoma, is frequently used for the identifica-
tion, tracking, and nowcasting of thunderstorms (Lakshmanan
et al., 2009).

The methodology of the proposed nowcasting model is pre-
sented next, followed by applied data sets, case studies, results
and verification, conclusions, and appendices.

2. Methodology

The PERCAST algorithm predicts rainfall rates in the next 4 h
(240 min) using infrared satellite imagery (GOES channel
10.8 pm) with time intervals of about 30 min between two con-
secutive satellite observations. Literature shows that a time inter-
val of 15-30 min between two observations can be appropriately
used to track storm features (Morel and Senesi, 2002; Vila et al.,
2008).

There are three major steps in PERCAST, as presented in Fig. 1:
(1) storm identification, (2) storm tracking, and (3) storm projec-
tion. The steps are described in detail in the following sections.

2.1. Storm identification (segmentation)

For the object-based nowcasting algorithms, effective storm
segmentation is the first step. Mature convective storms can pen-
etrate to high altitudes and, therefore, they show overshooting
tops and are well associated with colder cloud BT. While BT less
than 245 K can satisfactorily identify MCSs, usually the tempera-
ture between 228 K and 235 K has been proposed for the summer
season, which is based on the assumption that deep convection
penetrates in the upper troposphere (Machado et al., 1998; Vila
et al.,, 2008). Vila et al. (2008) proposed a 235K threshold for
MCS nowcasting studies. The proposed PERCAST algorithm would
process both mesoscale (e.g., MCS) and small-scale storm events
that could not be processed through a single thresholding screen-
ing (Lakshmanan et al., 2009). It has been documented that, for
cloud and precipitation studies, especially at weather scale, a sin-
gle BT threshold is not robust due to seasonal, regional, and cli-
matological variability (Adler et al., 1994; Machado et al., 1998).
Even multiple threshold techniques have been reported to be
problematic for severe storms (Lakshmanan et al., 2009). There-
fore, a more advanced segmentation algorithm, called the wa-
tershed transform algorithm, has been applied (Roerdink and
Meijster, 2001; Lakshmanan et al., 2009; Hong et al., 2004,
2005) (Appendix A).

2.2. Storm tracking and association

By defining contiguous pixels that are segmented in each
storm object, matching a storm at the current time (t) with
the storm’s corresponding location in the previous time
step(s) (e.g, t—1, t—2, etc.) is a major concern for each
nowcasting model. In addition, the PERCAST algorithm needs
to track both large- and small-scale events, which create more
complexity.

The PERCAST model tracks storms at pixel scale, which connects
pixels in two consecutive time steps through the cloud-image
advection vectors (Bellerby, 2006). Further, the overlapping pixels
within each segmented storm-coverage area from time t to t — 1
are estimated. A backward-forward tracking process connects pix-
els in storm objects from time ¢ to t — 1. The contribution/tracking
of a storm object from t — 1 to another storm at time t can be cal-
culated based on a proposed contribution function, as discussed
below.

First, assume that there are two consecutive image objects at
time t—1 and t, which correspond to the same storm/cloud,
where:

e O is an object at time t — 1, and A(O) is the area of O,
e O is an object at time t, and A(O') is the area of 0.

The contribution function between O and O’ (Eq. (1)) is calcu-
lated based on the number of pixels (area) being connected from
the object O’ at time ¢t to O at time t — 1 (Morel and Senesi, 2002).
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