Journal of Systems Architecture 63 (2016) 48-60

Journal of Systems Architecture

Contents lists available at ScienceDirect EMBEDDED
i

journal homepage: www.elsevier.com/locate/sysarc

Definitions of predictability for Cyber Physical Systems

@ CrossMark

Beilei Sun, Xi Li*, Bo Wan, Chao Wang, Xuehai Zhou, Xianglan Chen

School of Computer Science, University of Science and Technology of China, Room 421, Electronic Building 3rd, West Campus USTC, Hefei 215123, China

ARTICLE INFO

Article history:

Received 4 July 2015

Revised 26 November 2015
Accepted 25 January 2016
Available online 6 February 2016

Keywords:

Cyber Physical Systems
Predictability

1/0 behavior predictability
Time predictability

ABSTRACT

With the recent proliferation of different types of Cyber Physical Systems (CPS), it is critically important
to investigate the predictability of such systems. Along with functional correctness of the components,
these systems must also ensure that timing and delay constraints of components are properly for the
entire system to behave in a predictable manner in presence of various kinds of uncertainties. While the
functional correctness of the CPS components has been investigated in the past, very little is available
about the timing issues. The objective of this paper is to conduct an investigation of key issues involved
to ensure the predictability of the system, introduce rigorous definitions of performance parameters, and
propose metrics for their evaluation and analyze their suitability to be used in the presence of uncer-
tainties in which CPS operate. The results are expected to provide greater insight into the time critical
behavior of CPS components.

Order predictability

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Cyber-Physical Systems (CPS) are integrations of computation
with physical processes. Embedded computers and networks mon-
itor and control the physical processes, with feedback loops where
physical processes affect computations and vice versa [38,40]. Pre-
dictability is crucial for CPS testing and verification, which are re-
quired by time-critical applications such as traffic control, automo-
tive safety, and health care systems [20,38,40,41,45]. To improve
the predictability of concurrent and preemptive CPS, the first and
foremost work is to figure out the properties that should be pre-
dictable in CPS and precisely define the concept of predictability.

The predictability problem resounds throughout the embedded
systems community, particularly throughout the real-time commu-
nity. Stankovic and Ramamritham discuss the need for predictabil-
ity, with respect to the time requirements of different kinds of sys-
tems [52]. Thiele and Wilhelm define the time predictability by
considering the difference between the real Worst-Case-Execution-
Time (WCET) and the WCET bound, which is often called the pes-
simism of the analysis, as a measure for predictability [53]. Kirner
and Puschner define predictability as the interval between the Best
Case Execution Time (BCET) and the WCET, where a smaller inter-
val means better predictability [28]. Grund et al. investigate and
propose a template for the predictability definitions, and define the
predictability as the quotient of the minimum execution time over
the maximum execution time with all the possible inputs [21]. The

* Corresponding author. Tel.: +86 0512 62888062
E-mail address: llxx@ustc.edu.cn (X. Li).

http://dx.doi.org/10.1016/j.sysarc.2016.01.007
1383-7621/© 2016 Elsevier B.V. All rights reserved.

state-of-the-art predictability definitions can be classified into four
categories: 1) interval between BCET and WCET [28]; 2) quotient of
BCET over WCET [21]; 3) quotient of WCET over WCET bound [53];
4) quotient of BCET over WCET bound [53]. Almost all the afore-
mentioned definitions of predictability are based on WCET and
BCET, which are estimated by assuming the uninterrupted execu-
tion of a single task [4,21,28,53,56]. However, the assumption is not
true for most of CPS due to the concurrent and preemptive nature
of CPS [38]. In addition, CPS must be robust in presence of unex-
pected conditions, and adaptable to subsystem failures. Therefore,
the predictability of CPS has more rigorous semantic requirements
than the above definitions [40].

The objective of this paper is to investigate issues involved to
ensure the time predictability of CPS, introduce rigorous definitions
of performance parameters, and propose metrics for their evalua-
tion and analyze their suitability to be used in the presence of un-
certainties in which Cyber Physical Systems operate. Through an-
alyzing the behaviors of I/O and function task of typical program-
ming models and characteristics of CPS, we argue that both the
function tasks and I/O must have time predictability and order pre-
dictability. The 1/O behaviors must be predictable in terms of their
ready time and the inputs ready order, where the ready time refers
to the interval between the time when the value in the I/O source
changes and the time when the value in the I/O port is modified
correspondingly. The predictability of function tasks are discussed
and defined according to the concurrent and preemptive charac-
teristics of CPS. It includes the time predictability of individual
task and tasks set. And the execution order predictability of tasks
in a scheduling set must be predictable as well. We investigate
the sources of uncertainties of different properties that must be


http://dx.doi.org/10.1016/j.sysarc.2016.01.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2016.01.007&domain=pdf
mailto:llxx@ustc.edu.cn
http://dx.doi.org/10.1016/j.sysarc.2016.01.007

B. Sun et al./Journal of Systems Architecture 63 (2016) 48-60 49

Table 1
A comparison between the existing predictability definitions and our definitions.

Existing definitions Our definitions

Behaviors Function task Function task 1/0
Properties Execution time Response time Execution order 1/0O ready time Inputs ready order
Sources of Inputs, Hardware states Inputs, Hardware states, Concurrency, Preemption, Sensor, Network, Inputs ready time,
uncertainties Scheduling, Runtime system, Mutex hazards Memory delay processing order
Metrics Task execution time Task response time Execution order distance Inputs ready time Inputs buffer costs
variability variability variability variability variability

predictable, and propose definitions for them based on the uncer-
tainties and the template introduced in [21]. Table 1 shows the
differences between the existing definitions and our definitions.
The major contributions of our work are as follows:

(1) We give a comprehensive catalog of possible unpredictabil-
ity and summarize properties that must be predictable. We
emphasize the importance of 1/0O predictability by analyzing
their behaviors in different programming models, and we
analyze the function task predictability requirements in the
concurrent and preemptive environments.

(2) A careful investigation of the uncertainty sources of differ-
ent properties is made. By analyzing the major uncertainties,
we propose metrics and formal predictability definitions for
those properties. We present methods to calculate parame-
ters that are used in the definitions.

(3) To the best of our knowledge, this paper is the first to stress
the importance of order predictability in addition to only
time predictability reported in the literature. We propose
new ideas to determine the order (i.e., the inputs ready or-
der and the tasks execution order), and present methods to
calculate their predictability.

Our definitions can serve as metrics for measuring and com-
paring the predictability of CPS. CPS that have greater predictabil-
ity tend to have more reliable testing and verification results, as
well as time safety. When applied during CPS design, the metrics
help the designer in selecting suitable programming models, run-
time systems and hardware platforms to satisfy safety as well as
energy efficiency requirements. The order predictability can also
help to improve the CPS design, i.e., a predictable inputs ready or-
der is critical for the predictability of the input-determined real-
time systems, and the task execution order is important to make
the scheduling algorithm predictable and avoid some scheduling
anomalies and the mutex hazards as well. Finally, since our pre-
dictability definitions capture major sources of uncertainties, they
can be used to find out the bottleneck of the predictability. The
designer can improve the system’s predictability effectively by op-
timizing the bottleneck.

The rest of this paper is organized as follows: Section 2 dis-
cusses the requirements of the predictability of CPS and summa-
rizes the behaviors and properties that must to be predictable. We
investigate the sources of uncertainties of each predictable prop-
erty, and present formal definitions in Section 3. Section 4 shows
the related works, and we conclude our work and show the future
work in Section 5.

2. Predictability requirements of CPS

In this section, we illustrate that both the function task behav-
iors and the I/O behaviors must be predictable by analyzing their
logical and real time performance in different real-time program-
ming models at first. Then, from the characteristics of CPS stand-
point, we argue that both the time property and the order property
of the different behaviors must be predictable.

According to Klein and Ralya [31], Input is defined as reading
data from one or more sources of input; Qutput is defined as writ-

ing the results of the computation to one or more sinks, which
may be devices and/or main memory; function task is defined as
the process to compute output values, which are functions of the
gathered input values. These definitions are used throughout this

paper.

2.1. Behaviors need to be predictable

Most of the real-time programs are input-determined programs,
i.e,, if, for all sequences of input values and times, the program
produces, in all runs, unique sequences of output values and times
[29]. Therefore the I/O behaviors are critical to improve the pre-
dictability of the system. However, the I/O behaviors of most of
the real-time programs are unpredictable in either the logical time
(specified by programming models) or the real time (performed
during run time). We use the example shown in Fig. 1 to analyze
the 1/O behaviors of a task, which is realized in different program-
ming models and executed in preemptive environments. The top
half of Fig. 1 shows the logical time of three real-time program-
ming models (summarized in [16]). The bottom half shows the ex-
ecution of a task in different real time periods, during which the
task can be preempted by other tasks.

The asynchronous model bounds execution times using dead-
lines. A system built on the asynchronous model is a set of pro-
grams that consist of a finite number of tasks, which execute con-
currently under the supervision of specific mechanisms such as
real-time operating systems [16]. The execution of asynchronous
program is correct if the tasks finish writing outputs before dead-
line. However, since no I/O behaviors are specified in the asyn-
chronous model, the /O behaviors are highly unpredictable in both
the logical time and the real time. As shown in Fig. 1(a), the time
to process I/O is not specified in the programming model. In the
first real time period, the input and output happen at the second
time instant and the seventh time instant, respectively, while in
the second real time period, they are processed at the first time in-
stant and the eighth time instant, respectively. In the synchronous
model, the logical temporal reference is completely determined by
the successive reactions of the system happening on the occur-
rences of observed events [8,23]. Due to the synchronous assump-
tion of the model, the I/O behavior is predictable in the logical
time. In the real time, the input is processed at fixed time in-
stant, such as PRET-C [2]. However, since the synchronous pro-
gram is correct as long as the output completes before the next
input, the output behavior is still not predictable in the real time.
As shown in Fig. 1(b), the logical time to read input is specified
in the programming model. Therefore, the input is read at begin-
ning of each real time period. However, the output is written at
the seventh time instant and the 8th time instant in different real
time periods, respectively. The timed model (e.g., the Logical Exe-
cution Model (LET) [30]) describes the system with logical dura-
tion information, which is specified by the designer [16,30]. Since
the time information is priori fixed, e.g., the times to read input
and to write output are fixed in the LET model, the I/O behaviors
of the LET model are predictable and composable both in the real
time and the logical time [29,30]. As shown in Fig. 1(c), the logical



Download English Version:

https://daneshyari.com/en/article/457685

Download Persian Version:

https://daneshyari.com/article/457685

Daneshyari.com


https://daneshyari.com/en/article/457685
https://daneshyari.com/article/457685
https://daneshyari.com

