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s u m m a r y

This article describes the post audit and inverse modeling of a 1-D forward reactive transport model. The
model simulates the changes in water quality following artificial recharge of pre-treated water from the
river Rhine in the Amsterdam Water Supply Dunes using the PHREEQC-2 numerical code. One observa-
tion dataset is used for model calibration, and another dataset for validation of model predictions. The
total simulation time of the model is 50 years, from 1957 to 2007, with recharge composition varying
on a monthly basis and the post audit is performed 26 years after the former model simulation period.
The post audit revealed that the original model could reasonably predict conservative transport and
kinetic redox reactions (oxygen and nitrate reduction coupled to the oxidation of soil organic carbon),
but showed discrepancies in the simulation of cation exchange. Conceptualizations of the former model
were inadequate to accurately simulate water quality changes controlled by cation exchange, especially
concerning the breakthrough of potassium and magnesium fronts. Changes in conceptualization and
model design, including the addition of five flow paths, to a total of six, and the use of parameter estima-
tion software (PEST), resulted in a better model to measurement fit and system representation. No unique
parameter set could be found for the model, primarily due to high parameter correlations, and an assess-
ment of the predictive error was made using a calibration constrained Monte-Carlo method, and evalu-
ated against field observations. The predictive error was found to be low for Na+ and Ca2+, except for
greater travel times, while the K+ and Mg2+ error was restricted to the exchange fronts at some of the flow
paths. Optimized cation exchange coefficients were relatively high, especially for potassium, but still
within the observed range in literature. The exchange coefficient for potassium agrees with strong fixa-
tion on illite, a main clay mineral in the area. Optimized CEC values were systematically lower than clay
and organic matter contents indicated, possibly reflecting preferential flow of groundwater through the
more permeable but less reactive aquifer parts. Whereas the artificial recharge initially acted as an intru-
sion of relatively saline water triggering Na+ for Ca2+ exchange, further increasing total hardness of the
recharged water, the gradual long-term reduction in salinity of the river Rhine since the mid 1970s
has shifted to an intrusion of fresher water causing Ca2+ for Na+ exchange. As a result, seasonal and longer
term reversal of the initial cation exchange processes was observed adding to the general long-term
reduction in total hardness of the recharged Rhine water.

� 2012 Elsevier B.V. All rights reserved.

Introduction

Reactive transport modeling (RTM) provides a quantitative
interpretation of spatial and temporal changes in water chemistry
and deduction of key hydrogeochemical processes and parameters
at both aquifer and pore scales. Understanding the chemical inter-
actions between fluids and solids, and among fluids with different

physical and chemical characteristics can enable us to predict the
evolution of both fluid and solid phases in natural and engineered
environments (Steefel et al., 2005). We can acquire this under-
standing by studying the flow, solute transport and chemical reac-
tions through the application of RTM. More specifically RTMs can
be used to determine, for example, the fate of contaminants, the
feasibility of remediation strategies, the water quality changes
due to artificial recharge for drinking water production, or the
chemical reactions triggered by intrusion of foreign water into
aquifers. Decision making relies on accurate predictions reflecting
our current knowledge, which depends on the quality of both the
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numerical code and the conceptual model, and representation of
the latter when applying the numerical code. The representation
of the system can be improved by gathering data, and employing
this data in model calibration and validation. The selection of con-
ceptual models and parameter values is crucial for the predictive
capabilities of a model, and one way to improve this selection is
by using inverse modeling.

The use of automated inverse models in hydrological modeling
has a number of advantages compared to non-automated ap-
proaches such as manual trial-and-error calibration. Through the
use of inverse modeling the user can gain and assess the quality
of and confidence in parameter estimates and model predictions,
which again can reveal the quality of model representation of the
system. This may further assist in identifying properties of the
modeled system and improving future modeling efforts to reduce
predictive uncertainties through, for example, data collection strat-
egies targeting uncertain aspects of the model. The term inverse
modeling is used for the procedure of acquiring information on
the model, and thus the system under investigation, from field
observations, and includes parameter estimation (or model cali-
bration) and model identification (Carrera et al., 2005).

Inverse modeling is well established in the domain of ground-
water flow and solute transport modeling (GFM/STM). The inverse
problem has been discussed (e.g. Poeter and Hill, 1997; Carrera
et al., 2005), guidelines have been published (Hill, 1998) and cali-
bration schemes are increasing in complexity and detail, with for
example highly parameterized systems (e.g. Tonkin and Doherty,
2005), the use of geostatistical methods (e.g. Gómez-Hernández
et al., 1997) and multi-objective calibration (e.g. Cieniawski et al.,
1995).

Inverse modeling and predictive analysis in the field of RTM,
either coupled with flow models or not, is far less explored in com-
parison to GFM and STM. Calibration of RTMs is expected to be
more challenging than GFM or STM due to the larger number of
model parameters often involved and the complex interacting hyd-
rochemical processes occurring. In the recent years published stud-
ies applying inverse modeling to RTMs have increased, but few of
these studies offer much attention to the inverse process (e.g. van
Breukelen et al., 2004; van Breukelen and Griffioen, 2004). Some
notable exceptions are briefly listed below. Dai and Samper
(2004) presented a formulation of the inverse problem of flow
and RTM, and applied this to a synthetic example. They also used
their INVERSE-CORE2D code to recalibrate a previously trial-and-er-
ror calibrated model of Appelo et al. (1990). This improved the
model fit and determined the importance of calcite dissolution in
a column study. Dai and Samper (2006) also applied the same
methodology to two field cases of reactive transport to estimate
parameters, parameter uncertainty and identification of relevant
processes. Matott and Rabideau (2008) used the OSTRICH (Matott,
2005) optimization tool in combination with the reactive batch
and transport code NIGHTHAWK (Matott and Rabideau, 2010) to
evaluate the performance of three inverse search procedures, gradi-
ent, global and hybrid methods. The performance of the methods
were tested on synthetic batch and transport models simulating ni-
trate biodegradation, which included complex biochemical pro-
cesses. They found that the local search procedure using the
Levenberg–Marquardt algorithm suffered from local minima and
heterogeneous regions of extreme parameter sensitivity and insen-
sitivity. In most of the presented cases, the global and hybrid search
techniques resulted in better model fits. Samper et al. (2006) used
INVERSE-CORE2D to estimate solute transport parameters in a diffu-
sion and permeation experiment using various tracers. They found
that the interpretation of the experiment using the numerical in-
verse model was superior to the previously applied analytical ap-
proach, which failed to account for certain experimental
conditions. Samper et al. (2008), also using INVERSE-CORE2D,

estimated the diffusion coefficient and initial porewater concentra-
tions in single and dual porosity media with multicomponent reac-
tive transport in a column study. Yang et al. (2008) applied inverse
modeling with the microbial and reactive transport code INVERSE-
BIOCORE2D to an in situ experiment, and illustrated the advantage of
the automatic method over the previously applied trial-and-error
calibration. They also explored the effect of data noise on parameter
estimation error in a synthetic case study using the same model
code. However, predictive uncertainty or error analysis of model re-
sults was not within the scope of any of these studies.

Uncertainty of model results and predictions may stem from
three general sources: parameter uncertainty, scenario/stress
uncertainty and model uncertainty (Samper et al., 1990). The latter
includes the numerical code, conceptual model and model design.
The importance of performing uncertainty analysis on hydrological
predictions has been thoroughly discussed and recognized (e.g.
Beven and Binley, 1992; Pappenberger and Beven, 2006). Yet,
uncertainty analysis, as Pappenberger and Beven (2006) note, is
seldom performed in applied modeling for decision making pur-
poses despite a large number of proposed methodologies to per-
form such analysis. Rigorous predictive uncertainty analyses of
GFMs have been performed, exploring different methodologies
such as linear and non-linear to evaluate uncertainty (e.g. James
et al., 2009; Keating et al., 2010). Uncertainties related to the con-
ceptual model and stresses have been identified as a common
problem for the predictive accuracy of GFMs and STMs
(Bredehoeft, 2005). For example Troldborg et al. (2007) showed
how different conceptualizations in a multi-aquifer field case re-
sulted in large variations in solute transport, in spite of only minor
differences in hydraulic head distributions. Bell et al. (2002) used
Markov chain Monte-Carlo to assess model uncertainty related to
parameter uncertainty in a column transport study. Beyer et al.
(2006) performed a model uncertainty assessment of contaminant
plume length caused by the estimation of the first-order rate con-
stant using Monte-Carlo in a 2D heterogeneous synthetic flow
field. Inverse modeling is a valuable tool in uncertainty analysis,
as sensitivity analysis of parameters (including stresses), observa-
tions, predictions as well as testing the validity of various concep-
tualizations can readily be performed. Publicly available and tested
inverse modeling software such as UCODE 2005 (Poeter and Hill,
1998) and PEST (Doherty, 2005) include tools for evaluating pre-
dictive uncertainty analysis.

To further assess the model performance, a validation step, as
for example suggested by Refsgaard and Henriksen (2004), can
be performed, where model results are compared to field observa-
tions that were not included in the parameter estimation. This step
may be difficult to carry out, as data is often sparse and all data is
typically used to improve the parameter estimation and predictive
capabilities of the model, and none are left available for validation.
A stricter form of model validation, a post audit, can be carried out
to compare model predictions to field observations. To assure that
significant change has occurred in the modeled system, post audits
should not be carried out too soon after the previous modeling
(Anderson and Woessner, 1992). Post audits can be valuable for
our understanding of the model and system, for improving both
current model predictions as well as other future modeling tasks.
As models are frequently used for predictions and as a tool in deci-
sion making, post audits provide valuable information on where
our models commonly fail and allow modelers to take action in
assessing and reducing uncertainty of model predictions. Since
post audits require new field observations, a second inverse mod-
eling step can also be made, possible model errors can be identified
and parameter and predictive uncertainties can be reduced.

However, post audits are seldom performed, although their
importance and guidelines have been discussed (Anderson and
Woessner, 1992). For GFM and STM there is a handful of published
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