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s u m m a r y

Advances in remote sensing technology, notably in airborne Light Detection And Ranging (LiDAR), have
facilitated the acquisition of high-resolution topographic and vegetation datasets over increasingly large
areas. Whilst such datasets may provide quantitative information on surface morphology and vegetation
structure in riparian zones, existing approaches for processing raw LiDAR data perform poorly in riparian
channel environments. A new algorithm for separating vegetation from topography in raw LiDAR data,
and the performance of the Elliptical Inverse Distance Weighting (EIDW) procedure for interpolating
the remaining ground points, are evaluated using data derived from a semi-arid ephemeral river. The fil-
tering procedure, which first applies a threshold (either slope or elevation) to classify vegetation high-
points, and second a regional growing algorithm from these high-points, avoids the classification of high
channel banks as vegetation, preserving existing channel morphology for subsequent interpolation
(2.90–9.21% calibration error; 4.53–7.44% error in evaluation for slope threshold). EIDW, which accounts
for surface anisotropy by converting the remaining elevation points to streamwise co-ordinates, can out-
perform isoptropic interpolation (IDW) on channel banks, however, performs less well in isotropic con-
ditions, and when local anisotropy is different to that of the main channel. A key finding of this research is
that filtering parameter uncertainty affects the performance of the interpolation procedure; resultant
errors may propagate into the Digital Elevation Model (DEM) and subsequently derived products, such
as Canopy Height Models (CHMs). Consequently, it is important that this uncertainty is assessed. Under-
standing and developing methods to deal with such errors is important to inform users of the true quality
of laser scanning products, such that they can be used effectively in hydrological applications.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Accurate measurement of surface topography enables quantifi-
cation of changes in the Earth’s surface (Martinez-Casasnovas
et al., 2002; Thoma et al., 2005), and in the form of a Digital Elevation
Model (DEM), such measurements underpin the numeric simula-
tion of processes that lead to these changes (Bates et al., 2003). In
addition to advances in Interferometric Synthetic Aperture Radar
(IfSAR; Sanders, 2007), and Aerial Photogrammetry (Lane et al.,
2003), airborne Light Detection And Ranging (LiDAR) derived data
have emerged as a valuable tool for measuring surface topography
(Liu, 2008). LiDAR technologies offer the potential to identify 0.5–
1 m horizontal scale changes in the Earth’s surface elevation and
vegetation coverage over regional areas (Arroyo et al., 2010), and
also the potential to parameterise regional topography at 0.5–1 m

resolution in numerical hydrological/hydraulic models (Bates
et al., 2003). In doing so, LiDAR overcomes the temporal and spatial
constraints associated with measured topography and vegetation
cover in high resolution from ground survey alone (Heritage et al.,
2009; Malkinson and Wittenberg, 2007; Raven et al., 2009).

To produce accurate models of surface topography, LiDAR data-
sets need to be processed through a number of stages (Fisher and
Tate, 2006): two critical stages are the removal of non-ground
points from the raw data, and interpolation of the remaining
ground points. Proprietary filters supplied by contractors to re-
move vegetation from LiDAR data have been shown to perform
poorly in areas of high topographic variability in river channel
environments (Bowen and Waltermire, 2002; Bryant and Goodrich,
2005; Faux et al., 2009). Such environments are characterised by
steep (and often vertical) channel bank features, which can be ob-
scured by abundant riparian vegetation. A number of studies have
shown improved ground point interpolation performance in chan-
nel environments when accounting for surface anisotropy (Goff
and Nordfjord, 2004; Merwade, 2009; Merwade et al., 2006). The
performance of anisotropic interpolation algorithms applied to
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river channels where vegetation cover rather than manual ground
survey determines the density of ground point measurements
remains uncertain.

A detailed understanding of the errors associated with produc-
ing DEMs and Canopy Height Models (CHMs) is required given the
potential for error propagation into subsequently derived prod-
ucts; hydrological indices derived from DEMs such as drainage
density will be sensitive to these processing stages (Fisher and
Tate, 2006; Pirotti and Tarolli, 2010). Further, given strong non-lin-
ear relationships between model components and surface topogra-
phy (Hancock et al., 2010; Horritt et al., 2006; Lane et al., 1999),
such errors may propagate into hydraulic and sediment transport
models applied using DEM data. Errors may also propagate from
a CHM into subsequently derived vegetation metrics, including
vegetation biomass, Leaf Area Index (LAI) and carbon storage (Farid
et al., 2008; Gonzalez et al., 2010; Hurtt et al., 2004).

Accurate measurement of both surface topography (DEM) and
vegetation (e.g. aerial coverage and Canopy Height (Model;
CHM)) in river channel environments is required to understand
the complex interactions between riparian vegetation, water avail-
ability and channel morphology (Atchley et al., 1999; Hereford,
1993; Stromberg et al., 2007), and the impacts of human activities
upon riparian ecology (Arroyo et al., 2010).

The research objectives of this study are to: (1) Evaluate the per-
formance of a new non-ground point filter algorithm, specifically de-
signed to remove vegetation from ephemeral channel environments
that are characterised by strong topographic variation over spatial
scales similar to that of channel vegetation (1–10 m). (2) Evaluate
the performance of the Eliptical Inverse Distance Weighting proce-
dure (EIDW) when applied to interpolate elevation in semi-arid
channels, where ground-point sampling density is determined by
the density and spacing of vegetation patches. (3) Investigate how
errors in vegetation filter performance propagates to affect the per-
formance of EIDW employed to reproduce channel morphology.

Section 2 of this paper reviews existing approaches for filtering
LiDAR derived data, DEM interpolation, and consideration of error
propagation in DEM production. Following a description of the
study site and data (Section 3), the new vegetation filter (Section 4)
and interpolation procedure (Section 5) are described. Sections 6
and 7, respectively, describe the evaluation procedure and results.
Section 8 provides a discussion and Section 9 draws conclusions
from the research.

2. Non-ground point filtering, DEM interpolation and error
propagation

A significant body of research has investigated both non-ground
point removal from LiDAR data, and interpolation of remaining
ground-points, either applying both stages together in an iterative
procedure (Kobler et al., 2007), or separately (e.g. Cavalli et al., 2008).

Four groups of methods have commonly been classified in the
research literature to filter non-ground points from LiDAR derived
data: First, interpolation based filters, which include curvature
based methods (Evans and Hudak, 2007), and the REIN (REpetitive
INterpolation) algorithm (Kobler et al., 2007), which by interpolat-
ing independent samples of the raw data, generates multiple real-
isations of the potential ground surface; Second, slope based filters
that assume the gradient of the natural terrain is distinct from the
slope of non-ground points (Vosselman, 2000; Sithole and Vossel-
man, 2004); Third, morphological filters that seek to differentiate
between ground and non-ground points based on elevation differ-
ences between cells in the moving window (Chen et al., 2007;
Zhang et al., 2003); and Forth, Segmentation based filters, that ap-
ply regional growing and classification rules to segment an image
into ground, vegetation or buildings (Nardinocchi et al., 2003).

A number of studies have been conducted to determine the
relative performance of different filtering methods (Sithole and
Vosselman, 2004; Zhang and Whitman, 2005). Whilst most filters
tend to perform well in regions of low complexity such as flat ter-
rain, complex terrains, such as urban areas, steep forested terrain,
and river channel areas are more difficult to filter (Faux et al.,
2009; Sithole and Vosselman, 2003). Such errors are particularly
large when characteristics of the topographic surface traditionally
used to discriminate non-ground points (e.g. elevation, first/second
derivative of topography) are of similar magnitude to morpholog-
ical features (Faux et al., 2009). In light of these difficulties a
context specific approach to filtering LiDAR data has been recom-
mended (Sithole and Vosselman, 2003).

Methods frequently applied to interpolate ground point data in-
clude inverse distance weighting methods (IDW; Burrough and
McDonnell, 1998; Lu and Wong, 2008), Spline interpolation
(Desmett, 1997), and Kriging methods (Lloyd and Atkinson,
2002). Studies have shown that in areas of low point density, by
accounting for trends in spatial structure of data, Kriging outper-
forms IDW (Lloyd and Atkinson, 2002). However, as LiDAR data
in general have high point densities, IDW has been considered an
appropriate interpolator of LiDAR data (Liu et al., 2007). Both Liu
(2008), and Fisher and Tate (2006) conclude that no single interpo-
lation method is suitable for all terrains and sources of data. In the
context of channel environments anisotropic trends in the spatial
structure of data need to be considered (Merwade et al., 2006).

Fisher and Tate (2006) argue that relatively little work has
investigated error propagation between stages in DEM preparation.
Non-ground points that are not filtered from the LiDAR data (Type
II errors) may result in erroneous surface morphologies. Similarly,
Type I errors may lead to sparse ground points, particularly in areas
of high vegetation density, that when interpolated will fail to
reproduce surface morphology. There is little guidance in the liter-
ature regarding the methods by which parameters (e.g. thresholds
and window sizes) incorporated in both stages of DEM preparation
have been optimised within any individual test case (e.g. Evans and
Hudak, 2007; Zhang and Whitman, 2005). Manual optimisation, as
seemingly employed in many studies, may not identify the best
DEM surface, nor the optimal parameters, of which there may be
many (Beven and Freer, 2001), that may be applied successfully be-
yond the individual test case. Optimisation and uncertainty
quantification methods have been increasingly applied in the
hydrological sciences for parameter inference in numerical models
(Brazier et al., 2000; Vrugt et al., 2003). Despite the development of
these methods, and the widespread use of DEM’s in catchment
modelling, few studies have applied formal parameter inference
to find optimal parameters sets, and understand the sensitivity of
DEM accuracy to these parameters (e.g. Kobler et al., 2007).

3. Study location and data acquisition

The Walnut Gulch Experimental Watershed (WGEW) run by the
USDA Southwest Watershed Research Service (SWRC) since 1954,
is an 150 km2 experimental catchment located in Southeast Ari-
zona, USA (31� 430N, 110� 410W; Renard et al., 2008). The main
channel has a complex morphological structure, alternating be-
tween weakly braided and single thread sections, and is typical
of many rivers in the American Southwest (Pelettier and DeLong,
2004). Between 1974 and 2005 the channel area occupied by veg-
etation increased by 79% (Nichols and Shipek, 2006), hindering the
acquisition of surface morphology from airborne LiDAR.

LiDAR data were obtained by an Optech ALTM 1233 (Optech
Incorporated, Toronto, Canada), which was mounted onto a Uni-
versity of Florida plane and flown over the WGEW in the summer
of 2003. The Optech ALTM 1233, which has a 1064 nm laser, a
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