
End-to-end schedulability tests for multiprocessor embedded systems
based on networks-on-chip with priority-preemptive arbitration

Leandro Soares Indrusiak ⇑
Real-Time Systems Group, Department of Computer Science, University of York, York, United Kingdom

a r t i c l e i n f o

Article history:
Received 24 February 2014
Received in revised form 7 May 2014
Accepted 21 May 2014
Available online 13 June 2014

Keywords:
Network-on-chip
Embedded systems
Hard real-time

a b s t r a c t

Simulation-based techniques can be used to evaluate whether a particular NoC-based platform configu-
ration is able to meet the timing constraints of an application, but they can only evaluate a finite set of
scenarios. In safety-critical applications with hard real-time constraints, this is clearly not sufficient
because there is an expectation that the application should be schedulable on that platform in all possible
scenarios. This paper presents a particular NoC-based multiprocessor architecture, as well as a number of
analytical methods that can be derived from that architecture, aiming to allow designers to check, for a
given platform configuration, whether all application tasks and communication messages always meet
their hard real-time constraints in every possible scenario. Experiments are presented, showing the
use of the proposed methods when evaluating different task mapping and platform topologies.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Embedded systems typically have to fulfil timing constraints
that are related to their application domain and usage scenarios.
Constraints are usually specified as the deadline to perform specific
functions. For example, a high-definition video recorder must be
able to capture, compress and store 25 video frames per second.
In safety-critical applications, such constraints are said to be hard
real-time constraints, as there is an expectation that they have to
be met by the system in all possible scenarios. Therefore, embed-
ded systems designers must be able to evaluate which design
alternatives can fulfil those constraints and, for safety-critical
applications, guarantee real-time behaviour.

In this paper, we present analytical methods to evaluate whether
a multicore embedded system based on a Network-on-Chip (NoC)
can fulfil all its timing constraints. A NoC-based system can have
tens to hundreds of processing cores interconnected by an on-chip
packet-switching network that allows data to be transferred
between the local caches of each core and from/to external memory.
Section 2 of the paper provides more detail on this type of system
architecture. It will then become clear that the performance of the
NoC interconnect is as critical as the performance of the processing
cores when it comes to meet timing constraints.

Throughout this paper, we will use the terms end-to-end timing
constraint or end-to-end deadline of an application task-chain. Those

terms denote constraints derived from the application domain (e.g.
every video frame must be processed in 40 ms or less) that must be
met by specific components of the application (i.e. chains of com-
municating tasks). Our goal is to establish whether all task-chains
of an application have their end-to-end deadlines met by a partic-
ular NoC-based platform configuration, and this problem is
referred in this paper as end-to-end schedulability test. Such test
must consider the end-to-end latency of each task of a task-chain:
the time it takes for a processing core to execute that task (compu-
tation latency) plus the time it takes for the NoC to transfer all data
produced by that task to the next one on the chain (communication
latency). In Section 3, precise definitions of all those concepts will
be given, followed in Section 4 by formulations of end-to-end
schedulability tests that are tailored to NoC-based multicores with
priority arbitration.

Some of the schedulability tests presented in this paper are
based on classic Response Time Analysis (RTA) [1] and on NoC traf-
fic flow schedulability analysis [2]. Individually, those analyses
cannot be used to evaluate and improve the schedulability of a
NoC system. For example, the traffic flow schedulability analysis
from [2] has been used in [3] to produce fully schedulable task
mappings, but authors had to artificially limit the number of tasks
mapped to each core, as the analysis does not directly consider the
different interference patterns resulting from mapping the source
of the traffic flows to different cores. Without a limitation on the
maximum number of tasks per core, the mapping optimisation
process would lead to solution with all tasks mapped to the same
core (so all communications are local, instantaneous and therefore

http://dx.doi.org/10.1016/j.sysarc.2014.05.002
1383-7621/� 2014 Elsevier B.V. All rights reserved.

⇑ Tel.: +44 1904325570.
E-mail address: lsi@cs.york.ac.uk

Journal of Systems Architecture 60 (2014) 553–561

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2014.05.002&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2014.05.002
mailto:lsi@cs.york.ac.uk
http://dx.doi.org/10.1016/j.sysarc.2014.05.002
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

schedulable). Likewise, the evaluation of NoC schedulability using
only RTA would be oblivious to the delays caused by network con-
tention. Therefore, in this paper we discuss how to compose those
two analytical methods to achieve correct upper bounds to the
end-to-end latency, and show that the resulting analytical model
is useful as a test to evaluate whether a specific task mapping is
schedulable.

Schedulability tests are not always used in industry and acade-
mia. Often, system designers address the schedulability problem
by simulating the system under different scenarios and checking
if the obtained figures for computation and communication laten-
cies meet the constraints. There are two main limitations to that
approach. Firstly, for a complex multicore embedded system, the
simulation of a few seconds of an application’s execution may take
hours or days [4], limiting the number of design alternatives that
can be evaluated and the portion of the application lifetime that
can be considered. Secondly, simulation can only verify whether
constraints are met within the scenarios that are explicitly simu-
lated. In complex embedded systems, the set of possible scenarios
is too vast to be exhaustively covered, so it is not possible to check
whether constraints are always met. For example, if application
tasks can suffer release jitter, it would be necessary to simulate
each and every possible value of jitter for each task in order to
make sure that the timing constraints are met in every case. In Sec-
tion 5, we use a number of benchmarks to evaluate the proposed
schedulability tests, we compare the obtained figures with those
obtained with simulation, and propose a design flow that benefits
from the joint use of both techniques.

2. NoC-based multicores

NoCs are a common architectural template for processors with
dozens of cores, and it has the potential to scale with the increase
of the core count up to hundreds or thousands. Fig. 1 shows a sim-
plified representation of a NoC architecture. It has 16 cores, each of

them represented together with their own local cache as a white
rectangle. Cores are directly connected to NoC switches (grey rect-
angles), which route data packets towards a destination (which
may be another core, an interface to off-chip memory, a custom
hardware accelerator, etc.).

Many components of the NoC template can be parameterized to
better meet design goals, such as the number and type of cores,
buffering, routing and arbitration policies, among others. In this
paper, our choice of a specific subset within such a large number
of alternatives was based on three criteria: (i) adopt architectural
features that are widely used in industry and academia, (ii)
use on-chip resources efficiently, and (iii) privilege techniques
that are amenable to the type of schedulability tests we are
investigating.

Following criterion (i), we concentrate on the widely used 2D
mesh topology [5–8]. Criterion (ii) motivates the use of wormhole
switching, as its buffer overhead is much smaller than store-
and-forward (SAF) approaches, and its link allocation is more effi-
cient than circuit switching approaches: there is no need to reserve
the complete path of a packet, and NoC links are only allocated on
the segments of the path where there is data ready to be trans-
ferred. Finally, criterion (iii) requires some level of predictability
on resource sharing policies, so we limit our approach to NoCs with
non-adaptive routing and priority arbitration such as QNoC [7] or
Hermes [9]. The most common implementation of priority arbitra-
tion is based on virtual channels (VCs) [10], which allow packets
with higher priority to preempt the transmission of low priority
ones, making it easier to predict the outcome of network conten-
tion scenarios. Fig. 1 shows a detailed view of a NoC switch with
priority-arbitrated VCs: in each input port, a different FIFO buffer
stores data words (flits) of packets arriving through different VCs
(one for each priority level). The routing component assigns an
output port for each incoming packet according to their destina-
tion. A credit-based approach [10] guarantees that data is only for-
warded from a router to the next when there’s enough buffer space
to hold it at the right VC. At any time, a flit of a given packet will be
sent through its respective output port if it has the highest priority
among the packets being sent out through that port, and if it has
credits (that is, buffer space on the respective buffer of the neigh-
bouring node connected to that output port). If the highest priority
packet cannot send data because it is blocked elsewhere in the net-
work, the next highest priority packet can access the output link.

3. System model and notation

In this paper, we investigate ways to determine whether
application tasks executing and communicating over a specific
NoC-based multicore can meet all application-specific timing con-
straints. Therefore, we need a system model that covers the appli-
cation as well as the NoC-based platform and its configurations.

For the application model, we recall the sporadic task model
and define an application as a taskset C = {s1, s2, . . ., sn} where each
task si is a 6-tuple {Ci, Ti, Di, Ji, Pi, ui} indicating respectively its
worst case computation time, period (i.e. minimum inter-release
time interval), deadline, release jitter and priority. The sixth ele-
ment of the tuple is the only proposed addition to the sporadic task
model, and represents a communication message sent by si. Our
initial assumption is that each task produces a single message ui

which is sent immediately after it finishes its computation. The
message is defined as a 3-tuple {sd, Zi, Ki} representing its destina-
tion task, size and maximum release jitter. A task-chain X = {s1, s2,
. . ., sx} is an ordered subset of C where each task sends a message
to the subsequent task in X, and all of them have the same period
Tx. We assume that all task-chains in a particular application C are
disjoint subsets of C, and that loops are not allowed (i.e. the sixth

priority ID

…

highest priority
with remaining credit

data_in data_out

credit_in

…

routing
&

transmission
control

e f hg

i j lk

a b dc

priority ID

…

highest priority
with remaining credit

…

routing
&

transmission
control

m n po

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

credit_out

Fig. 1. NoC architecture with detail of the router structure.

554 L.S. Indrusiak / Journal of Systems Architecture 60 (2014) 553–561

Download English Version:

https://daneshyari.com/en/article/457729

Download Persian Version:

https://daneshyari.com/article/457729

Daneshyari.com

https://daneshyari.com/en/article/457729
https://daneshyari.com/article/457729
https://daneshyari.com

