
Horizontal solute transport from a pulse type source along temporally
and spatially dependent flow: Analytical solution

Sanjay Kumar Yadav a, Atul Kumar b, Naveen Kumar a,⇑
a Department of Mathematics, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
b Department of Mathematics, Lucknow University, Lucknow 226 007, India

a r t i c l e i n f o

Article history:
Available online 26 February 2011

Keywords:
Advection
Dispersion
Heterogeneity
Point source
Variable coefficients

s u m m a r y

Transport of solute mass transport, originating from a uniform pulse-type stationary point source
through a heterogeneous semi-infinite horizontal medium, is studied. The heterogeneity is described
by position dependent linear non-homogeneous expression for the velocity. The exponential unsteady
variation in velocity of decreasing/increasing is also considered. The variation in dispersion parameter
due to heterogeneity is considered proportional to square of that in the velocity. But the same due to
unsteadiness is proportional to a power of the velocity which may take any value between 1 and 2 or out-
side this range. The variable coefficients of the two-dimensional advection–diffusion equation are put in
degenerate form. These are reduced into constant coefficients with the help of new independent variables
introduced at different stages, paving the way for using Laplace transformation technique to get the
desired solution.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The development of research in the field of solute transport
through a medium is growing with the concern over the degrada-
tion of air, soil, surface water bodies and groundwater. Following
the formulation of the advective–diffusion equation (ADE) and
the theories relating dispersion and velocity (Taylor, 1953;
Scheidegger, 1957; Rumer, 1962; Freeze and Cherry, 1979), the
number of solute transport studies has increased considerably.
Many of these studies aimed at solving the ADE for non-reactive
and reactive solutes, subject to various initial and boundary condi-
tions. A number of analytical solutions describing solute moving
through one-dimensional media, considering adsorption, first-
order decay and zero-order production, are compiled by van
Genuchten and Alves (1982), Lindstrom and Boersma (1989). Many
solute transport models concern homogeneous media, but in real-
ity the ability of solute to permeate through the medium of air, soil
or groundwater varies with position, which is referred to as heter-
ogeneity. Early efforts to describe heterogeneity were achieved by
making the use of stratification and defining porosity–distance
relationship (Coats and Smith, 1964; Shamir and Harleman,
1967; Lin, 1977; Valocchi, 1989). Later scale-dependent dispersion
and velocity have been attributed to heterogeneity.

Based on the observations of de Marsily (1986), analytical solu-
tions to solute transport problem in a semi-infinite medium were

obtained by Yates (1992), where the dispersion parameter depends
on distance and increases up to some limited value. This problem
was extended by Logan (1996) for periodic input condition and in-
cluded the adsorption effects. A general methodology to develop
dispersion models in three-dimensional heterogeneous aquifers
under non-stationary conditions was presented by Serrano
(1996). General solution for one-dimensional solute transport in
heterogeneous porous media with scale-dependent dispersion
was developed by Huang et al. (1996). Analytical solutions of the
one, two, and three-dimensional ADEs were obtained by Hunt
(1998). He assumed dispersivities that increase directly with the
first power of the flow length for steady and unsteady flow.
Hantush and Marino (1998) modeled depth-averaged solute trans-
port and lateral-diffusive transport in a two-layer system of con-
trasting permeabilities. They obtained two-dimensional analytical
solutions for the first-order rate model in an infinite medium, using
the methods of Fourier and Laplace transforms. Analytical solution
was obtained to analyze the effects of space dependent reaction
coefficients on the one-dimensional transport of solute through
soil by Flury et al. (1998). Zoppou and Knight (1999) provided ana-
lytical solutions for two- and three-dimensional ADEs by assuming
a velocity component proportional to distance variable and corre-
sponding diffusion coefficient proportional to square of the veloc-
ity. Quadruple method is implemented in order to simulate the
effects of heterogeneities on one-dimensional advective and diffu-
sive transport of a passive solute in porous media by Didierjean
et al. (2004). Sander and Braddock (2005) and Su et al. (2005)
considered dispersivity in the form of separable power-law

0022-1694/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.jhydrol.2011.02.024

⇑ Corresponding author. Tel.: +91 9450541328.
E-mail addresses: naveen@bhu.ac.in, nks_1953@yahoo.co.in (N. Kumar).

Journal of Hydrology 412–413 (2012) 193–199

Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/ locate / jhydrol

http://dx.doi.org/10.1016/j.jhydrol.2011.02.024
mailto:naveen@bhu.ac.in
mailto:nks_1953@yahoo.co.in
http://dx.doi.org/10.1016/j.jhydrol.2011.02.024
http://www.sciencedirect.com/science/journal/00221694
http://www.elsevier.com/locate/jhydrol


dependence on both time and scale, and derived explicit closed
form solutions for describing solute transport in saturated hetero-
geneous porous media. The limitations of analytical solution for
ADE with coefficients being function of space variable have also
been analyzed by Neelz (2006). A numerical model to simulate
transient flow and solute transport through a variably saturated
zone by using the mixed form of Richards equation for the solution
of the flow component (being the mass conserving) and ADE for
the solute transport was presented by Soraganvi and Mohan Ku-
mar (2009).

Transport process in heterogeneous geological media is being
modeled in recent works by fractional advection–diffusion equation
(FADE) (Huang et al., 2008; Kim and Kavvas, 2006; Du et al., 2010).
But such mathematical models can be solved numerically only. As
FADE is the generalization of classical ADE hence the latter’s analyt-
ical solutions in different real cases are essential to validate the
numerical solution of a model comprising of the former, and those
of more comprehensive models using ADE. It is the reason why the
analytical solutions of advective–diffusive transport problems con-
tinue to be of interest in many areas. The literature presents several
methods to analytically solve the ADE (Guerrero et al., 2009). Exact
solutions of linear diffusion problems by classical integral trans-
form techniques were reviewed and classified by Mikhailov and
Ozisik (1984). They identified and unified seven classes of problems
and demonstrated many applications in heat and mass diffusion.
This work was generalized and extended by Kota (1993), thereby
creating a new systematic procedure referred to as the Generalized
Integral Transform Technique (GITT) used in recent works (Moreira
et al., 2009; Cassol et al., 2009; Guerrero and Skaggs, 2010).

The objective of the present study is to get the analytical solu-
tion of a two-dimensional advection–diffusion equation with vari-
able coefficients. The variability of the coefficients (dispersivity of
the solute transport and velocity of the flow domain) is considered
in more general and reasonable form. The medium is considered a
semi-infinite heterogeneous horizontal domain. The heterogeneity
is assumed of linearly increasing nature but of small order. Hence
the velocity is linearly interpolated as a non-homogeneous func-
tion of increasing nature in position variable in a finite domain
(in which concentration values are to be evaluated). Another vari-
ation in velocity is also assumed due to unsteadiness of exponen-
tial nature. According to Freeze and Cherry (1979), the dispersion
parameter is proportional to a power, n of the velocity which
ranges between 1 and 2. According to earlier theories cited at the
outset, n is either 1 or 2. In the present analysis, due to heteroge-
neity, n is considered 2 but due to the unsteadiness of exponential
nature, it may have any value between 1 and 2 or outside this
range. Like (Sander and Braddock, 2005; Su et al., 2005), the
expressions for velocity and dispersion are written in degenerate
form. New space and time variables are introduced at the different
stages through different transformations. It enables to reduce the
variable coefficients into constant coefficients. So a much simpler
but more viable Laplace transformation technique is used to get
the analytical solution. Such solutions will be very useful in vali-
dating a numerical solution of a more general dispersion problem
by infinite element technique (Zhao and Valliappan, 1994; Zhao,
2009), and other advanced numerical techniques (Herrera et al.,
2010). The solution is illustrated in a way to demonstrate the sol-
ute transport along the lateral direction. It has been found signifi-
cant even in very low velocity and dispersivity along this direction
compared to the respective longitudinal parts. It shows that a two-
dimensional model is more useful than a one-dimensional model.
Also solutions for different combinations of unsteadiness of both
the coefficients may be obtained as particular cases from the one
obtained in the present study. More solutions may be illustrated
for any value of n in the theory of Freeze and Cherry (1979), due
to the unsteadiness.

2. Mathematical formulation and analytical solution

Let solute particles of a pollutant enter a medium of the envi-
ronment of air or soil or water, at a site, continuously at a uniform
rate up to a certain time period, and just after that, let it become
zero. In other words, the source of pollution is a stationary uniform
pulse-type point source. For example, smoke coming out from a
chimney of a factory; particulate particles coming out of a volcano;
the sewage outlet of a municipal area or effluent outlet of a factory
or industry in a surface water medium; infiltrations of wastes from
garbage disposal sites, septic tanks, mines, discharge from surface
water bodies polluted due to industrial and municipal influents,
and reaching the ground water level, particularly with rainwater.
Let the solute particles be transported down the flow-stream due
to diffusion and convection, in a horizontal plane at the site of
the input concentration. Let the two perpendicular directions, both
of semi-infinite extents, in the horizontal plane be longitudinal
direction (0 6 x <1) and lateral direction (0 6 y <1). Let the
velocity components of the flow field at a position (x, y) in the hor-
izontal plane be u(x, t) and v(y, t) along the two directions, respec-
tively. Both will satisfy the Darcy law in case the medium is porous
or laminar conditions of the flow in case the medium is not porous.
Further let Dx(x, t) and Dy(y, t) be longitudinal and lateral compo-
nents of the solute dispersivity parameter at the same position,
respectively. The linear advection–diffusion partial differential
equation in two-dimensional horizontal isotropic plane medium
in general form may be written as follows:
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@t
¼ @

@x
Dxðx; tÞ

@c
@x
� uðx; tÞc

� �
þ @

@y
Dyðy; tÞ

@c
@y
� vðy; tÞc

� �
; ð1Þ

where c is the solute concentration of the pollutant, transporting
along the flow field through the medium at a position (x, y) at time
t .

To solve advection–diffusion Eq. (1) analytically, a set of initial
and boundary conditions is assumed. Initially the semi-infinite
medium is considered solute free. The source of the pollution is
considered to be a uniform pulse-type. The position where the
source introduces solute particles in the medium is assumed the
origin of the horizontal plane. Let time of elimination of the point
source be t0. Flux type homogeneous conditions are assumed at the
far ends of the medium, along both the directions. Thus the initial
condition, input condition and the other boundary condition are

cðx; y; tÞ ¼ 0; x P 0; y P 0; t ¼ 0; ð2Þ

cðx; y; tÞ ¼
C0; 0 < t 6 t0

0 ; t > t0

�
; x ¼ 0; y ¼ 0; ð3Þ

@c
@x
¼ 0;

@c
@y
¼ 0; x ! 1; y ! 1; t P 0; ð4Þ

where C0 is the reference concentration representing the input con-
centration released uniformly from the source.

The medium is considered heterogeneous. As a result the veloc-
ity of the flow field is considered a spatially dependent function in
both the directions. Along each of the two perpendicular direc-
tions, one such function is linearly interpolated in terms of respec-
tive space variable in a finite region, in which concentration values
are evaluated. Each function accounts for a small increase in veloc-
ity across the finite region. Further the velocity is also considered
temporally dependent. This dependence is considered of same nat-
ure in both the longitudinal and lateral directions. Thus the expres-
sions for velocity components are written in the degenerate form
as

uðx; tÞ ¼ u0f1ðmtÞð1þ axÞ and vðy; tÞ ¼ v0f1ðmtÞð1þ byÞ; ð5Þ
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