
A framework for post-silicon realization of arbitrary instruction
extensions on reconfigurable data-paths

Saptarsi Das a,⇑, Kavitha Madhu a, Madhav Krishna a, Nalesh Sivanandan a, Farhad Merchant a,
Santhi Natarajan a, Ipsita Biswas a, Adithya Pulli c, S.K. Nandy a, Ranjani Narayan b

a CAD Laboratory, Indian Institute of Science, Bangalore, India
b Morphing Machines Pvt. Ltd, Bangalore 560055, India
c T.U. Delft, Delft, Netherlands

a r t i c l e i n f o

Article history:
Received 10 January 2013
Received in revised form 15 June 2014
Accepted 18 June 2014
Available online 8 July 2014

Keywords:
Reconfigurable computing
Instruction extension
Architecture exploration
Hardware data-path
Application acceleration

a b s t r a c t

In this paper we present a framework for realizing arbitrary instruction set extensions (IE) that are iden-
tified post-silicon. The proposed framework has two components viz., an IE synthesis methodology and
the architecture of a reconfigurable data-path for realization of the such IEs. The IE synthesis methodol-
ogy ensures maximal utilization of resources on the reconfigurable data-path. In this context we present
the techniques used to realize IEs for applications that demand high throughput or those that must pro-
cess data streams. The reconfigurable hardware called HyperCell comprises a reconfigurable execution
fabric. The fabric is a collection of interconnected compute units. A typical use case of HyperCell is where
it acts as a co-processor with a host and accelerates execution of IEs that are defined post-silicon. We
demonstrate the effectiveness of our approach by evaluating the performance of some well-known inte-
ger kernels that are realized as IEs on HyperCell. Our methodology for realizing IEs through HyperCells
permits overlapping of potentially all memory transactions with computations. We show significant
improvement in performance for streaming applications over general purpose processor based solutions,
by fully pipelining the data-path.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Extensible processors [1,2] are a class of processors that can be
configured and/or extended. Extensible processors are key
components of MPSoCs. MPSoCs are increasingly being used for
embedded applications that demand both high performance and
throughput in small form factor low power devices. One of the
methods to achieve this is to accelerate application kernels by exe-
cuting them as Instruction Extensions (IEs) on custom data-paths.
An IE is a bundle of basic instructions that is executed as a single
macro operation with multiple inputs and multiple outputs
(MIMO) [3]. The relative ordering of basic instructions that consti-
tute an IE is fixed and is not elaborated upon in the definition of the
IE. IEs are used to replace code sequences that are either hot-spots

or sequential bottlenecks. IEs also offer significant savings in
energy consumption over pure software implementation using
general purpose processors by eliminating fetch, decode and mem-
ory/register-file transactions for the individual basic instructions
that constitute the IEs. Broadly, there are two ways in which IEs
are realized:

� IEs are determined for a domain of applications through exten-
sive application profiling and analysis of hot-spots. The fixed
ordering of basic instructions that comprise an IE necessitates
fixed hardware data-path for its implementation. Such fixed
data-paths are realized as Custom Functional Units (CFUs)
and/or custom data-paths [1,4]. Some of the prominent tech-
niques for automatic synthesis of application-specific IEs are
presented in [5–8]. High NRE cost associated with the realiza-
tion of such CFUs cannot be avoided. This drawback renders this
approach inapplicable in scenarios where flexibility in terms of
application scalability, interoperability are desirable objectives.
� IEs may be defined post-silicon. This entails synthesis of MIMO

macro operations on the same hardware data-path. Since IEs
originate from different application domains system designers
may conduct design-space exploration with various choices of

http://dx.doi.org/10.1016/j.sysarc.2014.06.002
1383-7621/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: sdas@cadl.iisc.ernet.in (S. Das), kavitha@cadl.iisc.ernet.in

(K. Madhu), madhav@cadl.iisc.ernet.in (M. Krishna), nalesh@cadl.iisc.ernet.in
(N. Sivanandan), farhad@cadl.iisc.ernet.in (F. Merchant), santhi@cadl.iisc.ernet.in
(S. Natarajan), ipsita@cadl.iisc.ernet.in (I. Biswas), a.pulli@student.tudelft.nl
(A. Pulli), nandy@serc.iisc.ernet.in (S.K. Nandy), ranjani.narayan@morphingmachines.
com (R. Narayan).

Journal of Systems Architecture 60 (2014) 592–614

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2014.06.002&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2014.06.002
mailto:sdas@cadl.iisc.ernet.in
mailto:kavitha@cadl.iisc.ernet.in
mailto:madhav@cadl.iisc.ernet.in
mailto:nalesh@cadl.iisc.ernet.in
mailto:farhad@cadl.iisc.ernet.in
mailto:santhi@cadl.iisc.ernet.in
mailto:ipsita@cadl.iisc.ernet.in
mailto:a.pulli@student.tudelft.nl
mailto:nandy@serc.iisc.ernet.in
mailto:ranjani.narayan@morphingmachines.com
mailto:ranjani.narayan@morphingmachines.com
http://dx.doi.org/10.1016/j.sysarc.2014.06.002
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


IEs without having to redesign hardware data-paths for each
individual choice of IEs. Thus post-Silicon definition of
data-paths for IEs can mitigate the high NRE costs associated
with CFUs and enable support for application scalability and
interoperability without compromising on performance. This
approach can be classified into two categories.
– Data-paths for IEs are synthesized from their Hardware

Description Language (HDL) descriptions on FPGA like
substrates. Examples of this approach include Molen Poly-
morphic Processor [9], Convey Hybrid-Core Computer [10].
One major shortcoming of this approach is the necessity of
HDL programming to specify the IEs.

– Data-paths for IEs are synthesized from High Level Language
(HLL) descriptions. Platforms such as Reconfigurable Custom
Functional Unit (RCFU) proposed by Murakami et al. [11,12]
and the Dyser-fabric [13] based architecture of accelerator
proposed by Benson et al. [14] use HLL based description
of IEs.

From the above classification it becomes clear that post-Silicon
IEs synthesized using HLLs are going to be part of future-proof
embedded solutions due to their flexibility and ease of use.

Implementation of such IEs require a reconfigurable hardware
data-path supported by an automatic IE synthesis. Note that
reconfigurable data-paths are usually designed as 2-D structures
comprising array of FUs/ALUs and some form of programmable
interconnect. The constituent basic instructions in an IE are real-
ized on the FUs/ALUs. Communication between basic instructions
resulting from the relative ordering of basic instructions pertaining
to different IEs are realized using the programmable interconnect.
In literature, there exists a large number of Coarse Grain Reconfig-
urable Architectures [15–17]. In the present exposition we discuss
only those coarse grain structures that are used to synthesize IEs
[11,12,14]. These solutions do offer reduced energy footprint for
compute-intensive applications through IEs. However, achieving
high throughput necessitates execution of IEs by staging many
dynamic instances of the same IE in a pipeline. Note that there
may exist dependences across dynamic instances of an IE. Such
dependences prevent initiation of dependent instances of IEs in
close succession. However, this problem may be circumvented by
interleaving execution of different instances of IEs that are inde-
pendent. HyperCell, as a data-path element for IEs as presented
in this paper supports a micro-architecture for pipelined execution
of IEs. In the following we quantitatively establish the benefits of
pipelined executions of IEs.

Consider a DFG GðV ; EÞ1 corresponding to an IE. Let us assume
that the DFG has n vertices corresponding to n elementary (dyadic/
monadic) instructions and the critical path2 delay is s units. In
Table 1 we present a comparison of execution time of the DFG
GðV ; EÞ on three different platforms. When implemented on a single
FU/ALU, the execution time3 of the DFG is n, the number of vertices
in the DFG. When implemented on a linear row of w FUs, the
execution time has a lower bound of n

w. Note that in the linear row
of FUs there are w FUs available in the data-path and we achieve
up-to w-times speedup over a single FU. Therefore improvement in
performance is commensurate with the increase in hardware
complexity of the data-path. On the other hand, as we migrate to a

reconfigurable hardware comprising array of n FUs, the improve-
ment in performance is incommensurate with increase in hardware
complexity. Implementation of the DFG GðV ; EÞ on such a reconfigu-
rable hardware data-path incurs execution time proportional to s.
Therefore, with an n-times increase in number of FUs we achieve
only a n=s-times improvement in performance. This is largely due
to the fact that at any instant of time, only a small subset of
resources are utilized for computation while the remaining
resources starve for data. We refer to this aforementioned phenom-
enon of incommensurate improvement in speedup with increase in
hardware complexity as Speedup-gap. Speedup-gap can be defined
as the ratio of relative hardware complexity and speedup.

Note that the relative hardware complexity is measured by
comparing the number of ALUs/FUs in different platforms. We
make an important observation from Table 1. The speedup-gap
encountered in implementing IEs on 2-D reconfigurable data-path
is caused by long-latency sequential paths in the DFGs of the IEs.
Bridging the speedup-gap between reconfigurable data-paths and
general purpose processor based implementations require exploi-
tation of both spatial and temporal parallelism to increase hard-
ware utilization of the reconfigurable data-paths to 100%.
Realization of systolic algorithms on systolic architectures are well
known examples of architectures that exploit both spatial and
temporal parallelism in applications [18]. However it should be
noted that systolic architectures are not very suitable for realizing
data-paths for IEs of diverse nature. If we can imitate the behaviour
of systolic architecture by supplying the reconfigurable hardware
with different sets of data corresponding to different instances of
G every cycle, then the problem of speedup-gap can be alleviated.
In that case, the effect of the long latency sequential parts of an
application get amortized through pipelining of many dynamic
instances of G. If N instances of the graph are executed exploiting
both spatial and temporal parallelism, the total execution time
on hardware is sþ ðN � 1Þ. Execution time on linear FU array is
Nn
w and on single FU is Nn. Therefore speedup achieved through
hardware implementation of G with respect to single FU is, nN

sþN�1
which becomes close to n, when N becomes very large. The
speedup is proportional to the number of vertices of DFG realized
on hardware. Similarly speedup with respect to linear FU array of
issue-width w is Nn

wðsþN�1Þ ’ n
w, which is the ratio of number of FUs/

ALUs in the reconfigurable hardware data-path and the linear FU
array. In general, if the initiation interval of dynamic instances of
the IE is D cycles4, then the total execution time of N dynamic
instances is sþ ðN � 1ÞD. Thus the speedup-gap with respect to sin-
gle FU can be quantified as nðsþðN�1ÞDÞ

nN and the speedup-gap with
respect to linear FU array can be quantified as nðsþðN�1ÞDÞw

wnN . For large
enough N, the speedup-gap approaches D, the initiation interval.
Therefore minimization of speedup-gap necessitates execution of
many dynamic instances of the IE in a pipelined manner and minimi-
zation of initiation interval of the successive dynamic instances.

Executing many dynamic instances of an IE in a pipelined man-
ner is akin to executing kernels on fixed-function hardware, where
the operations remain fixed in space and input sets corresponding
to different dynamic instances are streamed into the hardware.
Streaming kernels5 such as FFT, FIR are naturally the most suitable
candidates for execution on such hardware structures comprising
large number of FUs/ALUs since they can be easily expressed as suc-
cessive dynamic instances of the same DFG. However, applications
with very high degree of parallelism can also be partitioned into
parallel kernels which in turn can be realized as IEs in a streaming

1 Since each IE contains a set of basic instructions, the IE can be represented as a
Data Flow Graph GðV ; EÞ, where the set of vertices V in the graph represents the set of
basic instructions and the set of edges E represents set of dependences between the
said basic instructions.

2 Critical path of a data flow graph is the longest path from one of the root nodes to
one of the leaf nodes.

3 In this example we assume all the operations to be of same latency. This
simplifying assumption is made to keep the comparison simple. A more realistic
example is presented in Table 3.

4 The latency of schedule between successive dynamic instances of the same IE is
the initiation interval [19].

5 Streaming kernels are characterized by four major characteristics, viz. self-
containment and independence of kernels, static nature of the computation groups,
explicit definition of communication and limited lifetime of the stream data [20].

S. Das et al. / Journal of Systems Architecture 60 (2014) 592–614 593



Download English Version:

https://daneshyari.com/en/article/457732

Download Persian Version:

https://daneshyari.com/article/457732

Daneshyari.com

https://daneshyari.com/en/article/457732
https://daneshyari.com/article/457732
https://daneshyari.com

