Journal of Systems Architecture 60 (2014) 247-257

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Deadline and activation time assignment for partitioned real-time
application on multiprocessor reservations

@ CrossMark

Yifan Wu *, Zhigang Gao, Guojun Dai

Department of Computer Science and Technology, Hangzhou Dianzi University, 310018 Hangzhou, Zhejiang, China

ARTICLE INFO ABSTRACT

Article history:
Available online 7 December 2013

Providing temporal isolation between critical activities has been an important design criterion in real-
time open systems, which can be achieved using resource reservation techniques. As an abstraction of
reservation servers, virtual processor is often used to represent a portion of computing power available
on a physical platform while hiding the implementation details. In this paper, we present a general
framework of partitioning an application comprised of hard real-time tasks with precedence constraints
onto multiple virtual processors in consideration of communication latencies between tasks. A novel
method is proposed for assigning deadlines and activation times to tasks such that tasks partitioned onto
different virtual processors can be analyzed separately using well-established theories for uniprocessor.
Extensive simulations have been performed and the results have shown that, compared to existing algo-
rithms, the proposed method achieves better performance in terms of minimizing both total bandwidth

Keywords:

Real-time systems
Resource reservation
Deadline assignment
Multiprocessor

and the maximum individual bandwidth.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Modern embedded systems are shifting towards computation
platform with multiple processing units. Multiprocessor or multi-
core architectures are favored for their potential of providing high-
er computational power with reduced energy consumption and
heat dissipation. However, to fully exploit this capability, the
intrinsic parallelism of software application must be taken into ac-
count, leading to increased dimension of system design space. In
fact, the problem of allocating and scheduling real-time tasks to
multiple processing units is known to be NP-hard, and has received
considerable amount of attention from the research community.

On the other hand, the increasing functionality and services
provided by the embedded systems add significant complexity to
the design and verification of the system. While off-the-shelf mod-
ules and legacy software are used to reduce the development cycle
and cost, applications from various software vendors characterized
with diverse timing properties are competing for the same re-
sources. In such an open system [1], isolating the temporal behavior
of different applications is of crucial importance for preventing re-
ciprocal interference among critical activities. To accomplish this,
resource reservation [2,3] has been proposed as a promising tech-
nique to provide temporal isolation between real-time tasks.

On uniprocessor platform, resource reservation technique is
used to partition the CPU processing capacity into a set of reserva-
tions, each characterized with a couple (Qy, Py) indicating that Q,

* Corresponding author. Tel.: +86 13967104602.
E-mail address: yfwu@hdu.edu.cn (Y. Wu).

1383-7621/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.sysarc.2013.11.011

units of processing time are available every period Py. In that case,
each reservation is equivalent to a virtual processor with a reduced
bandwidth oy = Q;/Px. The use of virtual processor has several
advantages. Besides the protection of temporal behavior of the
allocated tasks from interference of other tasks, analysis and de-
sign based on virtual processors also improve modularity and sim-
plify portability on different architectures using different server
mechanisms. In recent years, resource reservation on multiproces-
sor platform has received increasing research attention, where
reservation servers for uniprocessor platform are extended [4],
and new abstraction models are proposed [5-7]. In this paper,
we abstract the physical multiprocessor platform using a set of
uniprocessor reservations described through the Multi-Supply
Function (MSF) model proposed by Bini et al. [8]. Each reservation
is represented by a bounded-delay time partition, denoted by the
pair (o, A), where « is the allocated bandwidth and A is the maxi-
mum service delay. This method, originally proposed by Mok et al.
[9], is general enough to express several types of resource reserva-
tion servers.

We present a general framework of partitioning real-time
applications to multiple virtual processors. A real-time application
is described as a set of tasks with precedence relations that forms a
directed acyclic graph. Upon dividing the task set into several
subsets, the activation time and deadline of each task are set in
accordance with timing and precedence constraints. This allows
exploiting the well-established analysis techniques of real-time
systems on uniprocessor for each individual task subset. Each
subset of tasks is then allocated to a virtual processor, and the
reservation parameters for each virtual processor are optimally

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2013.11.011&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2013.11.011
mailto:yfwu@hdu.edu.cn
http://dx.doi.org/10.1016/j.sysarc.2013.11.011
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

248 Y. Wu et al./Journal of Systems Architecture 60 (2014) 247-257

chosen to minimize the resource provision while maintaining the
schedulability of the system.

The theoretical foundation of this paper is based on previous
work presented in [10]. However, several key contributions have
been made. (a) The communication costs between tasks were com-
pletely ignored in [10], which made the proposed method only
applicable to computation-intensive applications. Our work takes
communication cost as a major design concern and hence can be
applied to both homogeneous multi-core or multiprocessor sys-
tems. (b) The deadline setting method in [10] is merely based on
intuition and may not achieve optimal performance under certain
scenarios. In this paper, a novel method for activation time and
deadline assignment is proposed aiming at minimizing both the to-
tal resource demands and the maximum individual resource
requirement. The problem can be efficiently solved using linear
programming and produces better performance in general case.

The remainder of the paper is organized as follows. Related
works are described and evaluated in Section 2. The system model
and terminology are introduced in Section 3. Section 4 presents the
general framework, together with some important adaption of
previous works in consideration of a more general system model.
Section 5 proposes a novel method for deadline and activation time
assignment, followed by simulation and experimental evaluations
in Section 6. Finally, Section 7 concludes the paper and plans for
the future work.

2. Related works

Several works have been proposed to solve the problem of par-
titioning a group of tasks on multiprocessor/multi-core platforms.
Baruah and Fisher [11] presented a heuristic algorithm to partition
a set of sporadic real-time tasks to multiprocessor architecture,
without consideration of tasks’ precedence relations. Schranzhofer
et al. [12] proposed a method to divide tasks to multiprocessor
platform aiming at minimizing the average power consumption.
However, they did not consider real-time tasks. Li et al. [13] con-
sidered the partition problem of real-time tasks onto multiproces-
sor, which intends to minimize system workload and number of
occupied processors without violating real-time constraints. The
method mainly targets at real-time transactions in real-time dat-
abases, rather than general parallel applications.

To partition real-time tasks to system with multiple processing
units, Peng and Shin [14] employed the task graph to represent a
real-time periodic application, which is then divided to distributed
processing units using branch and bound search. The design goal is
to minimize the response time. Ramamritham [15] presented a
search method to allocate periodic tasks to distributed system,
considering precedence relations, communication costs and repeti-
tion of the tasks. Abdelzaher and Shin [16] considered the problem
of partitioning large-scale real-time systems on heterogeneous dis-
tributed systems. The proposed method tries to find the best
matching of clustered tasks and processing units, and has good sca-
lability. These methods mainly considered how to achieve a feasi-
ble solution or minimize the response time, rather than to optimize
the resource utilization.

There are two main categories of partitioning tasks with prece-
dence relations and non-negligible communication costs. One cat-
egory, called List Scheduling [17,18], is based on the idea that
assigns the task with the highest priority to the best suitable pro-
cessor at each step of the process. The other category is based on
critical path [19-21] which tries to reduce the length of critical
path at each time a task is selected to allocate. The two categories
of algorithms are mostly designed to reduce the length of the sche-
dule (makespan), and do not consider real-time constraints.

The problem of managing real-time tasks with precedence rela-
tions was addressed by Chetto et al. [22], who proposed a method

to convert a precedence graph into timing constraints by assigning
proper activation times and deadlines to all tasks, in such a way
that the schedulability under EDF was guaranteed. However, this
algorithm does not consider the possibility of having parallel exe-
cution and is only applicable to uniprocessor systems. Di Natale
and Stankovic [23] presented a method to assign individual dead-
lines based on the distribution of the laxity equally among all tasks,
while Kao and Garcia-Molina [24] proposed to assign deadlines to
real-time tasks by dividing the end-to-end deadline proportionally
to the computation time of all tasks. Both methods did not consider
resource utilization. Serreli et al. [25] formulated an optimization
problem to decide the assignment of intermediate deadlines for
EDF scheduled real-time tasks, which however is only valid for
real-time transactions.

3. System model

An application T is modeled as a Directed Acyclic Graph (DAG)
G = (V,E), also called a task graph, where V is a set of v = |V| hard
real-time tasks and E is a set of e = |E| precedence relations be-
tween tasks, where |.| is the cardinality of a set. The application
is characterized with a minimum inter-arrival time T (also referred
to as period), which is the smallest time interval between two in-
stances of a task. A relative deadline D represents the end-to-end
deadline of the application with respect to its activation. That is,
assuming an instance of I" arrives at time t, it must complete all tasks’
execution before t+ D. Assuming D can be no greater than T, it
indicates that only one instance of I" occurs at any time. Without
loss of generality, I' is assumed to start at t = 0.

Each task t; € V represents a portion of sequential execution of
the application which can not be parallelized, characterized by the
worst-case computation time C;, the deadline d; and the activation
time a;. Notice that, d; and g; are not set by the application designer.
Rather, they are assigned as internal parameters only for the pur-
pose of scheduling in the real-time operating system. Tasks are
fully preemptible and scheduled by Earliest Deadline First (EDF).

The precedence relation in the set E, denoted by t; — Tj, repre-
sents that 7; is a predecessor of 7;, and 7; is a successor of 7;. In
the DAG, a task having no predecessor is called an entry task, and
a task having no successor is called an exit task. Each precedence
relation is associated with a worst-case communication latency 6;j,
which is the maximum time required to communicate the data
from 7; to 7;. The communication-to-computation ratio CCR of an
application is defined as its average worst-case communication la-
tency divided by its average worst-case computation time, i.e.,

M An application with CCR « 1 is said to be computa-
Zwlevci/”
tion-intensive.

We assume that the underlying platform has homogeneous pro-
cessing units, and the communications between tasks can take
place simultaneously by incorporating the queuing time for mem-
ory access or message transmission into the worst-case communi-
cation latency ¢;;. Furthermore, ¢;; is assumed to be independent
with the physical location of tasks on the processing units. This
can be achieved by, for instance, fully connecting all the processing
units [21] or employing prioritized time-division-multiplexed ap-
proach for on-chip communication [26].

A virtual processor VP, is an abstraction of a sequential machine
achieved through a resource reservation mechanism characterized
by a bandwidth o, < 1and a maximum service delay A, > 0.Itisalso
called a (a, A) server [9], where the correct timing behavior of tasks
that are allocated to it are guaranteed only by the assigned parameter
oy, and Ay, and is independent of the behavior of other tasks.

A flow F, is a non-empty subset of tasks F, C V allocated on vir-
tual processor VP,, which is dedicated to the execution of tasks in

Download English Version:

https://daneshyari.com/en/article/457745

Download Persian Version:

https://daneshyari.com/article/457745

Daneshyari.com

https://daneshyari.com/en/article/457745
https://daneshyari.com/article/457745
https://daneshyari.com

