
Exploring the design space of multiprocessor synchronization protocols
for real-time systems

Andreu Carminati a,⇑, Rômulo Silva de Oliveira a, Luís Fernando Friedrich b

a Universidade Federal de Santa Catarina, DAS-CTC-UFSC, Caixa Postal 476, Florianópolis, SC, Brazil
b Universidade Federal de Santa Catarina, INE-CTC-UFSC, Caixa Postal 476, Florianópolis, SC, Brazil

a r t i c l e i n f o

Article history:
Available online 7 December 2013

Keywords:
Real-time
Scheduling
Synchronization
Multiprocessors

a b s t r a c t

The goal of this paper is to explore the design space of protocols for multiprocessor systems with static
priority and partitioned scheduling. The design space is defined by a set of characteristics that can vary
from one protocol to another. This exploration presents new protocols with different characteristics from
existing ones. These new protocols are considered variations of the Multiprocessor Priority Ceiling Pro-
tocol (MPCP), but they can also be seen as variations of the Flexible Multiprocessor Locking Protocol
(FMLP), since they include features common to both protocols. Schedulability tests are provided for these
new variations and they are compared with the original versions of MPCP and FMLP. Such comparisons
include an empirical comparison of schedulability and an overhead evaluation of a real implementation.
Such comparisons show that these new variations are actually competitive in relation to the existing
protocols.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the increasing use of multiprocessor systems
has motivated the fast development of many solutions for the
scheduling of tasks in these systems in the presence of real-time
requirements. One of the greatest challenges of real-time schedul-
ing is to synchronize the access to mutual-exclusive resources
efficiently, since that the existing synchronization protocols for
uniprocessor systems can not be directly extended to multiproces-
sors. In this context, to schedule a set o real-time tasks on a
multiprocessor system, we must limit the blocking time of each
of these tasks using an appropriated synchronization protocol.
Without a bounded blocking time, a task cannot have its deadline
restrictions guaranteed.

The goal of this paper is to explore the design space of synchro-
nization protocols for real-time systems in multiprocessor
environment. The design space is considered as a set of basic char-
acteristics, that include: queuing policy in case of blocking (FIFO,
priority order, etc.), preemptability of critical sections, and execu-
tion control policy in case of blocking (suspension or spin.) In this
context, a protocol can be seen as a carefully selected set of char-
acteristics from the design space of protocols. Existing protocols
do not explore all possible features within the design space. With
this exploration of characteristics as premise, we propose new

protocols that will be treated as variations of the Multiprocessor
Priority Ceiling Synchronization Protocol (MPCP.) The MPCP was
originally proposed by Rajkumar et al. [1,2] for multiprocessor
systems with static priority and partitioned scheduling, where
tasks are statically allocated to processors. These new variations
can also be seen as variations of FMLP [3], since they include fea-
tures common to both protocols.

Schedulability tests are provided for these new variations and
they are compared with two existing protocols for the same system
model (partitioned and static priority scheduling): the Multipro-
cessor Priority Ceiling Protocol for Shared Memory (MPCP) and
the Flexible Multiprocessor Locking Protocol (FMLP). In this paper
we consider only global resources (which are accessed by more
than one processor) in both equations and in the empirical com-
parison of protocols. Local resources can be handled by protocols
designed for uniprocessor systems, which has been extensively
studied in the literature. This is the usual approach of the literature
on multiprocessor synchronization protocols.

The objective of this paper is not to propose better protocols
than the existing ones for all system configurations. Previous stud-
ies have shown that, for multiprocessor systems, there is not a syn-
chronization protocol that dominates all others in all situations
(different task sets and system models). It is always possible to
hand craft a task set that favors one or another existing protocol.
We present in this paper variations of the MPCP that improve in
some cases the system schedulability reducing the number of pro-
cessors needed to schedule a system. Some variations are actually
simplifications that favor the implementation in real systems.

1383-7621/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.sysarc.2013.11.010

⇑ Corresponding author. Tel.: +55 04896318322.
E-mail address: andreu@das.ufsc.br (A. Carminati).

Journal of Systems Architecture 60 (2014) 258–270

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2013.11.010&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2013.11.010
mailto:andreu@das.ufsc.br
http://dx.doi.org/10.1016/j.sysarc.2013.11.010
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


The rest of the paper is organized as follows: Section 2 presents
the system model and notations used throughout the text. In
Section 3 we present a review of the MPCP protocol. In Section 4
and 5 we do the same for the FMLP and MSRP protocols, respec-
tively. Section 6 presents our proposals. In Section 7 we show a
comparison between the proposed solutions and existing proto-
cols. Section 8 presents an implementation of one variation, which
will be used in Section 9 for overhead evaluation. Finally, Section
10 presents the conclusions of this paper.

2. System model

In this work it is considered only partitioned and static priority
scheduling of periodic task sets. In partitioned scheduling, tasks are
statically allocated to processors via dedicated queues. Global
scheduling will not be considered in this work. The partitioned
scheduling with static priority is also known as P-SP (partitioned
static priority). This type of scheduling is addressed by uniproces-
sor algorithms in each processor, so the main problem is how to
perform the partitioning of the tasks. The partitioning of the tasks
among processors is effectively the Bin Packing problem, as
pointed by Coffman et al. [4], which is NP-hard with combinatorial
complexity. One possible strategy is to partition according to some
heuristics, such as BFD (Best-fit decreasing), RM-FFDU described by
Oh et al. [5] or group by resource usage as in [6]. In this work we do
not explicitly consider nested critical sections and deadlock avoid-
ance. It is perfectly possible to do as in [3] where techniques such
as group locking are used with synchronization protocols to allow
nested critical sections.

2.1. System definition

The notation that will be used throughout the text is the same
as in [6], because we based the schedulability analysis of the
protocols in that article. Task si is defined by the tuple ððCi;1;C

0
i;1;

Ci;2;C
0
i;2; . . . ;C0i;sðiÞ�1; Ci;sðiÞÞ; TiÞ where:

� sðiÞ is the number of normal execution segments of si, whereas
sðiÞ � 1 is the number of critical section segments of si.
� Ci;j is the WCET of the jth normal execution segment, whereas

C0i;j is the WCET of the jth critical section segment.
� Ci is the total WCET of task si. In this notation, the execution

time of each task is segmented into sections of normal execu-
tion and critical sections. The worst-case execution time of a
task si can be calculated as the sum of all task segments, being
they normal or critical. The task execution time can be calcu-
lated by the following equation:

Ci ¼
XsðiÞ
j¼1

Ci;j þ
XsðiÞ�1

k¼1

C 0i;k: ð1Þ

� si;j is the jth normal execution segment of a task si, whereas s0i;j
is the jth critical section segment of a task si.
� Ti is the period of si.
� Rðsi;jÞ is the resource corresponding to the jth critical section

segment of a task si.
� PðsiÞ is the processor that executes task si.Given two tasks si

and sj, if i < j then the priority of si is higher than the priority
of sj.

2.2. Blocking aware response time analysis

Based on the notation presented and the blocking times (which
will be presented later), one can calculate the worst-case response
time (WCRT) Wi of a task si.

The equations described in this section were presented in [6,7].
The WCRT of a task is calculated iteratively:

Wnþ1
i ¼ Ci þ Br

i þ In
i þ Blow

i : ð2Þ

In Eq. (2), Ci is the task WCET, Br
i is the total remote blocking

time (that is dependent of the synchronization protocol utilized),
In
i represents the interference imposed by higher priority tasks.

Blow
i represents the blocking time imposed by lower priority tasks.

This blocking time exists because a task can be prevented from
executing at its release as the result of a lower priority task run-
ning on a non-preemptive way (inside a critical section in this
case). The initial value of the convergence must be W0

i ¼ Ci þ Br
i .

The calculation of interference follows two approaches, one for
suspension-based protocols and another for spin-based protocols:

� For suspension-based protocols (tasks are suspended and they
do not spin-lock), the calculation of interference must be done
by Eq. (3).

In
i ¼

X
h<i&sh2PðsiÞ

Wn
i þ Br

h

Th

� �
Ch: ð3Þ

In Eq. (3), the blocking times of a higher priority task may
increase the WCRT of a lower priority task. This equation captures
an effect called back-to-back execution pointed by Rajkumar [8]
and Lakshmanan et al. [6], where a task suffers additional interfer-
ence from auto-suspending (when blocked on some mutex) high-
er-priority tasks (not accounted in normal interference
scheduling analysis). This happens because a higher priority task
can suspend itself in the middle of its execution and come to pre-
empt a lower priority task more than once during its activation. An
upper bound for this type of interference is Br

h, that must be added
to Wn

i in a way similar to release jitter modeling.

� For spin-based protocols, the calculation of interference must
be done by the following equation:

In
i ¼

X
h<i&sh2PðsiÞ

Wn
i

Th

� �
ðCh þ Br

hÞ: ð4Þ

In Eq. (4), the spin time of a task (when blocked) appears as an
increasing on its own computing time from the standpoint of lower
priority tasks. So, this time must be summed to the computing
time of each higher priority tasks, as can be seen in Eq. (4).

The calculation of the blocking time caused by lower priority
tasks must follow three approaches, one for suspension-based pro-
tocols and two for spin-based protocols:

� For suspension-based protocols, such calculation can be done
by the following equation:

Blow
i ¼ sðiÞ �

X
l>i&sl2PðsiÞ

max
16k<sðlÞ

C 0l;k: ð5Þ

In Eq. (5), every time a task blocks (in the worst-case, a task will
block on every resource acquisition attempt) and also before its
activation, it will allow lower priority tasks to execute. This lower
priority tasks can block on resources. When the lower priority task
receives the resource, it will preempt the higher priority tasks,
because all synchronization protocols that use suspension execute
critical sections with a priority higher than normal priorities. This
equation offers an upper bound for this blocking.

� For spin-based protocols, this calculation varies whether the
protocol treats blocking with preemptive or non preemptive
spin:

A. Carminati et al. / Journal of Systems Architecture 60 (2014) 258–270 259



Download English Version:

https://daneshyari.com/en/article/457746

Download Persian Version:

https://daneshyari.com/article/457746

Daneshyari.com

https://daneshyari.com/en/article/457746
https://daneshyari.com/article/457746
https://daneshyari.com

