
Colored Petri Net model with automatic parallelization on real-time
multicore architectures

Chao Wang a,b, Xiaojing Feng a,b, Xi Li a,⇑, Xuehai Zhou a, Peng Chen a,b

a School of Computer Science, University of Science and Technology of China, Hefei, China
b Suzhou Institution of USTC, Suzhou, China

a r t i c l e i n f o

Article history:
Available online 26 September 2013

Keywords:
Colored Petri Net (CPN)
Task scheduling
Multiprocessor system-on-chip (MPSoC)
Model based design

a b s t r a c t

This paper proposes a novel Colored Petri Net (CPN) based dynamic scheduling scheme, which aims at
scheduling real-time tasks on multiprocessor system-on-chip (MPSoC) platforms. Our CPN based scheme
addresses two key issues on task scheduling problems, dependence detecting and task dispatching. We
model inter-task dependences using CPN, including true-dependences, output-dependences, anti-depen-
dences and structural dependences. The dependences can be detected automatically during model
execution. Additionally, the proposed model takes the checking of real-time constraints into consider-
ation. We evaluated the scheduling scheme on the state-of-art FPGA based multiprocessor hardware
system and modeled the system behavior using CPN tools. Simulations and state space analyses are con-
ducted on the model. Experimental results demonstrate that our scheme can achieve 98.9% of the ideal
speedup on a real FPGA based hardware prototype.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Real-time multiprocessor system-on-chips (MPSoCs) are com-
monplace recently, and the number of processors on an MPSoC is
growing steadily. However, the performance potential of MPSoCs
cannot be tapped out unless applications running on them have
been highly parallelized. One common approach of parallelizing
applications is task scheduling. Task scheduling in real-time multi-
processor systems is to assign tasks to different processors, allow-
ing them execute in parallel so that all time constraints imposed on
tasks are satisfied.

Parallel programming models have been widely used to exploit
parallelism, such as OpenMP [1], MPI [2], Intel’s TBB [3], CUDA [4],
OpenCL [5] and Cilk [6]. They are perceived to result in high perfor-
mance gains. However, the major drawback of these models is that
they impose too many burdens to programmers, and therefore lead
to low application-development productivity. To lighten the
burden of programmers, automatic parallelization technologies
have been intensely studied. Recent studies such as task supersca-
lar [7] explore a new research direction into extracting Task Level
Parallelism (TLP).

There are numerous approaches for modeling a scheduling
system on MPSoCs, such as directed graph, Petri net, UML activity
diagram and so on. Of these approaches, model based design pro-

vides a promising approach for tackling these problems. Benefiting
from verification and simulation on models, design errors can be
detected as soon as possible and various paradigms of designs
can be evaluated in early design phases. Furthermore, by perform-
ing time-based simulations on models, any violation of time
constraints can be revealed prior to the implementation of real-
time systems.

Model based design methodology has been widely applied in
solving task scheduling problems for real-time multiprocessor
systems. Nonetheless, little research has been conducted on mod-
eling dynamic scheduling schemes. It is mainly because there are
two vital behaviors hard to describe using modeling languages:

(1) Dependence detecting: In a dynamic scheduling scheme, tasks
are usually reordered to perform out-of-order execution for
exploiting task-level parallelism. However, the scheduling
scheme can lead to correct task execution order only when
all inter-task dependences are maintained. It demands that
system models are able to describe and detect different
types of dependences at run time. Since the out-of-order
task execution is characterized by concurrent and asynchro-
nous, It is difficult to model the dynamic behavior of depen-
dence detecting. Most related work takes inter-task
dependency as a priori, while rarely addresses the problem
of dynamic dependence detecting.

(2) Task dispatching: Task dispatching here refers to assigning a
particular processor to a task when there are multiple pro-
cessors capable to execute it. Task dispatching strategy also
has significant effect on system performance, since the exe-

1383-7621/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.sysarc.2013.08.016

⇑ Corresponding author. Address: School of Computer Science, University of
Science and Technology of China, Room 421, Electronic Building 3rd, West Campus
USTC, Hefei 215123, China. Tel./fax: +86 0512 62888062.

E-mail address: llxx@ustc.edu.cn (X. Li).

Journal of Systems Architecture 60 (2014) 293–304

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2013.08.016&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2013.08.016
mailto:llxx@ustc.edu.cn
http://dx.doi.org/10.1016/j.sysarc.2013.08.016
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


cution and communication costs of each individual task vary
among different dispatching strategies. In a dispatching
strategy, the mapping relationship between tasks and pro-
cessors must be established and modified dynamically.
Therefore, modeling the strategy is challenging, especially
on the heterogeneity MPSoCs architectures.

In this paper, we construct CPN-based models for Task-Level
Score boarding, and consider both partitioning and dependence
detection simultaneously. Simulation experiments are performed
on CPN Tools [8] finally.

Furthermore, we also implement a prototype system on a single
Xilinx Virtex-5 FPGA board and perform a series of experiments to
compare the performances between task superscalar and our
proposed Task-Level Scoreboarding.

We claim the following contributions:

(1) This paper presents a scheduling scheme for MPSoCs, called
Task-Level Scoreboarding, which can automatically detect
inter-task dependences and extract TLP by allowing tasks
to execute out-of-order. Compared with state-of-art
approaches, our proposed approach introduces lower time
overhead and achieves more significant performance.

(2) We construct a CPN-based model for the proposed schedul-
ing scheme. The model can identify different types of depen-
dences and simulate both scheduling and partitioning
processes of tasks. Besides, various partitioning strategies
can be evaluated based on the model. With the help of our
CPN model, different design paradigms can be conveniently
evaluated. This will lead to significant reduction on time-to-
market.

The rest of this paper is organized as follows. Section 2 summa-
rizes previous work related to task scheduling problems and rele-
vant modeling methods. Section 3 presents the Task-Level
Scoreboarding scheduling scheme. The CPN model of Task-Level
Scoreboarding is elaborated in Sections 4 and 5 presents the heter-
ogeneous multiprocessor prototype and experimental results.
Finally, Section 6 concludes this paper and introduces future work.

2. Related work

In order to tap out the performance potential, there have been
many approaches proposed to parallelize the workloads of multi-
processor systems. Recent works employ hardware techniques to
reduce runtime overhead, such as carbon [9], ADM [10], task
superscalar [7,11]. Especially, task superscalar proposes an
abstraction of out-of-order superscalar pipelines. With the support
of renaming mechanism, task superscalar is able to eliminate WAR
and WAW hazards dynamically and thereby extract more parallel-
ism at task level. However, the runtime time overhead introduced
by renaming mechanism is considerable. For application work-
loads where WAW and WAR hazards do not arise frequently, the
objective of applying renaming mechanism is not justified enough.
Directed and undirected graphs provide an intuitive approach to
model multiprocessor tasks informally. Various directed and undi-
rected graphs based models for scheduling algorithms are sur-
veyed in [12]. In these models, nodes in a graph are used to
represent tasks, while the arcs represent precedence constraints
or inter-task interactions. These graphs have the virtues of simple
structure and graphical representation. However, although they
are competent to modeling the workflows, they do not have the
capability to describe data-flow and control-flow for modeled sys-
tems. Furthermore, since the modeling languages lack of formal
definitions, these models usually lead to inconsistency and ambi-

guity in system specification. Therefore, there is a need to resort
to formal methods, especially in context of complex system
designs.

A timed automaton is a finite-state machine equipped with
time concepts. It supports modeling of times by annotating state-
transition graphs with clock variables and time guards. Transitions
in an automaton are conditioned by time guards which compare
clock variables with time constants, and firing a transition can af-
fect the values of selected clock variables. This property enables
timed automata to model time-dependent systems. When timed
automaton was first introduced by Rajeev Alur and David Dill
[13], its expressive power was strictly limited. Nevertheless, a lot
of efforts have been made towards extensions of timed automata.
For example, weighted/priced timed automata were introduced
independently in [14,15], which extend cost information on loca-
tions and transitions. The timed automata in [16] is extended with
deadlines and release times which are two common features in
scheduling problems. These extensions increase the expressive
power of original timed automata and are employed to model sys-
tems in, among others, scheduling problems. To name a few, the
extended timed automata model in [16] is adopted in solving the
problem of scheduling partially-ordered tasks on parallel ma-
chines, while weighted/priced timed automata are applied to opti-
mal scheduling and planning problems in [17]. In these timed
automata models, each task and resource must be represented by
a single automaton. Since the model structures remain fixed during
the execution of models, certain applications which require dy-
namic creation of new tasks cannot be modeled using timed auto-
mata. Furthermore, it is hard to use timed automata to model
concurrent systems with shared resources [18]. Due to this limita-
tion with respect to modeling power, the application scope of
timed automata is greatly restricted.

On the contrast, Petri nets, especially CPN, have received much
attention for modeling scheduling processes on multiprocessor
platforms. For instance, Zuberek et al. model the scheduling of
multiple tasks on distributed-memory multiprocessors using CPN
[19]. The proposed model can be utilized to evaluate the influence
of different model parameters on the system performance. In [20],
CPN is used to build a model which formally describes the behavior
of task distribution and execution within the grid environment.
Based on the analysis of the model, the grid service reliability
can be evaluated. Reference [21] studies the task scheduling of a
robot system with temporal constraints, using timed Petri nets.
[22] presents a Petri net based model of task scheduling on dynam-
ically partitioned multiprocessor systems and performs a series of
sensitivity analyses on the model. However, none of these models
take inter-task data dependences into consideration.

Tavares et al. propose a model based scheduling scheme for
multiprocessor systems with timing and energy constraints
[23,24]. In the scheme, multiprocessor tasks are modeled using
timed Petri nets. The model can describe precedence/exclusion
relations among tasks. Hoheisel et al. develop a Petri net based
model for workloads in the Fraunhofer Resource Grid (FhRG) envi-
ronment [25,26]. Their model also considers the precedence con-
straints on grid tasks. Eskinazi applies timed Petri net within a
reconfigurable environment and proposes a Petri net model
responsible for task dispatching and relocation [27]. Dodd presents
a CPN model for real-time task scheduling system of Seahawk heli-
copter [28]. The model is capable to monitor input/output re-
sources of each task and detect inter-task dependences. However,
it does not take task dispatching into account, since the modeled
tasks have been statically bound to processors.

To the best of our knowledge, there are no Petri net based sched-
uling schemes addressing dependence detecting and task dispatch-
ing simultaneously. This paper takes both of these problems into

294 C. Wang et al. / Journal of Systems Architecture 60 (2014) 293–304



Download English Version:

https://daneshyari.com/en/article/457749

Download Persian Version:

https://daneshyari.com/article/457749

Daneshyari.com

https://daneshyari.com/en/article/457749
https://daneshyari.com/article/457749
https://daneshyari.com

