Journal of Systems Architecture 60 (2014) 305-314

Contents lists available at SciVerse ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

An efficient and comprehensive scheduler on Asymmetric Multicore
Architecture systems

@ CrossMark

Jiun-Hung Ding?, Ya-Ting Chang?, Zhou-dong Guo?, Kuan-Ching Li®, Yeh-Ching Chung **

2 Dept. of Computer Science, National Tsing Hua University, Taiwan
b Dept. of Computer Science and Information Engineering, Providence University, Taiwan

ARTICLE INFO ABSTRACT

Article history:
Available online 29 May 2013

Several studies have shown that Asymmetric Multicore Processors (AMPs) systems, which are composed
of processors with different hardware characteristics, present better performance and power when com-
pared to homogeneous systems. With Moore’s law behavior still lasting, core-count growth creates typ-
ical non-uniform memory accesses (NUMA). Existing schedulers assume that the underlying architecture
is homogeneous, and as consequence, they may not be well suited for AMP and NUMA systems, since
they, respectively, do not properly explore hardware elements asymmetry, while improving memory uti-
lization by avoid multi-processes data starvation. In this paper we propose a new scheduler, namely
NUMA-aware Scheduler, to accommodate the next generation of AMP architectures in terms of architec-
ture asymmetry and processes starvation. Experimental results show that the average speedup is 1.36
times faster than default Linux scheduler through evaluation using PARSEC benchmarks, demonstrating

Keywords:

Asymmetric architecture

NUMA architecture

Single-ISA heterogeneous multicore
processors

Scheduling

that the proposed technique is promising when compared to other prior studies.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

With advances in microprocessor technologies and accelerated
with development of multicore, manycore- and embedded sys-
tems-related technologies last years, processors evolve to include
more processing units — hundreds to thousands of cores - into
one single die and widely exploited in High Performance Comput-
ing, by harnessing processor architectures in parallel with other
technologies and techniques to achieve such high performance.

Asymmetric Multicore Processors (AMPs) system is recently
introduced, as composed of processors with different characteris-
tics, e.g., clock speed, cache capacities, power consumption, occu-
pied area and the complexity of execution pipeline, containing or
not the same Instruction Set Architecture (ISA), also known as sin-
gle-ISA heterogeneous multicore [1,3]. Instances of AMP system
may contain a few powerful and effective cores and a larger num-
ber of cores with slower speed and less power consumptions [1,3].
Many strategies are employed to explore few powerful out-of-or-
der with higher clock speeds and large cache capacities, suitable
for executing the throughput oriented applications and single-
threaded sequential applications, while for slower but less
power-consuming cores, for parallel execution. Such an idea has

* Corresponding author. Address: Dept. of Computer Science, National Tsing Hua
University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan. Tel.: +886 3
5742971.

E-mail address: ychung@cs.nthu.edu.tw (Y.-C. Chung).

1383-7621/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.sysarc.2013.05.006

been considered by major manufacturers as IBM, AMD and Intel,
to combine 32- or 64-bit x86 or Power cores with capable graphics
processing units (GPUs) or Synergistic Processor Elements (SPEs)
on a single silicon die, e.g., IBM’s cell processor [21], AMD’s APU
[20] and Intel’s Larrabee [19]. Prior studies show that the typical
AMP system has significant energy benefits and occupies minor
die area, yet maximize the power efficiency [1,2,8]. As result, given
the core-count growth, access time to memory is variable and de-
pends on the relative location of a processor, which characterizes it
as Non-Uniform Memory Access architecture (NUMA) [17]. With
rapid growth on the number of cores in computing systems, the
amount of memory requests issued by processor cores increases
memory starvation.

This limitation on the number of memory accesses decreases
the performance of modern multicore systems, and can starve sev-
eral processors at the same time. In NUMA systems, this problem is
settled by providing separate memory for each processor, which is
likely to lift the performance when several processors attempt to
access same memory. Unfortunately, current OS schedulers as-
sume that the underneath hardware is homogeneous, that is,
AMP systems and NUMA architecture are not considered as well
as decoupled. Taking as example Linux 2.6 Completely Fair Sched-
uler (CFS), this scheduler uses a red-black tree implementation to
manage the executable processes instead of running queue per
processor. The main idea of CES is to provide processor time to each
task fairly. For instance, in a system with n executable processes,
each of them should be given 1/n process time of a tiny period.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2013.05.006&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2013.05.006
mailto:ychung@cs.nthu.edu.tw
http://dx.doi.org/10.1016/j.sysarc.2013.05.006
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

306 J.-H. Ding et al./Journal of Systems Architecture 60 (2014) 305-314

Since the abilities of processors in AMP systems are different, 1/n
process time in faster and slower processor cores are completely
different. Hence, the scheduler should take the AMP architecture
into account. In another direction, NUMA architecture can be used
to avoid contention of memory accesses between processes, by
dividing the memory into multiple nodes, exploring the high-
speed interconnections among them, e.g., Intel’s Quick Path Inter-
connect (QPI) and AMD’s Hyper Transport (HT). However, given the
higher core-count growths and consequent large NUMA architec-
tures formed, combined to the different AMP hardware adaptive
design, can provide smaller memory resource contention and avoid
data starvation. Again, the scheduler must consider the NUMA
architecture in order to get additional benefits from this computer
memory design. Based on this tendency, we believe that the AMP
and NUMA are essential as the next generation of hand-held de-
vices’ architecture. In order to make OS working well with AMP
and NUMA, we propose a new scheduler policy, NUMA-aware
Scheduler for Asymmetric Multicore Processors, to support AMP
and NUMA architectures. Interesting components as target in our
proposed scheduler policy are twofold. The former one is Asym-
metric-aware schedule policy, where dynamically trigger AMP
scheduler to place the suitable processes on the specific type of
cores, while the latter one is NUMA-aware schedule policy, in
which precisely calculates the current system performance degra-
dation due to resource contention, minimizing the degradation by
thread migration and memory management.

The proposed NUMA-aware Scheduler for AMP (Asymmetric
Multicore Processors) is implemented in Linux CentOS release 6.0
and evaluated on a 8-core, 32 GB Dell PowerEdge R910 system.
Using performance counters, we independently modulated the
CPU frequency as a performance asymmetry factor and explored
the NUMA memory space to avoid resource contention. Comparing
to Linux CFS scheduler and execution of PARSEC benchmarks, the
proposed scheduler improves performance by a factor of 1.36x.

The remaining of this paper is organized as follows. In
Section 2, some related works are presented, while the overview
of NUMA-aware Scheduler for Asymmetric Multicore Processors
is given in Section 3. The design of the NUMA-aware Scheduler
for Asymmetric Multicore Processors is discussed in Section 4,
and evaluation is shown in Section 5. Finally, Section 6 summa-
rizes our findings, as also brings some remarks and topics for
future research.

2. Related work

There are several references in literature showing energy ben-
efits of Asymmetric Multicore Architectures [1,2,8]. The research
study in [1] showed that this architecture could achieve a large
amount of energy reduction with small performance penalty. In
order to accommodate the heterogeneity of Asymmetric Multi-
core Processors, there are several researches [1-9] that discussed
scheduling algorithms. Some of them considered the load balanc-
ing policy and then implemented an Asymmetric-aware load-
balancing [3]. Therefore, the processes’ characteristics were not
taken into account. Some of them made use of static-time profil-
ing data [4,5], in which could not detect the phase change of a
process during runtime. Krumar et al. [1,2] proposed a dynamic
core selection based on actual execution performance between
different types of cores, and therefore, threads migrate between
different cores. Unfortunately, the thread migration overhead is
redundant and the cost is high, especially on NUMA architectures.
Some of them proposed a dynamic way [6] to implement the
scheduler during runtime and profiling data simultaneously,
though the periodic profiling and computing are time consuming.
Furthermore, the NUMA architecture is not fully considered in
such study.

The proposed scheduler based on dynamic computed metric is
surprisingly accurate and processes did not have to execute on dif-
ferent type of cores. We made use of hardware counter to gather
periodically system’s information with tiny overhead and com-
puted the corresponding metric when necessary. Therefore, we
minimized the overhead as best as possible and scheduled the pro-
cesses properly. Hence, modern multicore systems increasingly use
the NUMA architecture, and it had been discussed for several years
[10-15]. NUMA architectures have benefits, but the system could
not learn to profit with proper utilization. Yang et al. [10] analyzed
the on-chip interconnect and intra-core bandwidth contention,
and then showed the importance of load-balancing between
threads. Blagodurov et al. [11] presented a NUMA-aware conten-
tion management to reduce the performance degradation; Majo
et al. [14] solve the problem by taking both interconnect overhead
and cache contention into consideration. In addition, Pusukuri
et al. [15] dynamically reduced the performance variation due to
NUMA architectures.

3. Proposed scheduler

The purpose of a process scheduling is to optimally sort inde-
pendent processes according to a given parameter and then exe-
cute them. In proposed NUMA-aware Scheduler for AMP, the
schedule policy is based on ranking processes according to two
metrics, Online AMP Speedup Factor and Resource Contention Deg-
radation Factor, to determine how appropriate they are to be run
on certain type of core, the faster core or the slower core, or do-
main. In the aim of deriving these two metrics for a process, we
need a runtime profiler to get ready this information. The AMP
Speedup Factor and Contention Degradation Factor are recalcu-
lated once the schedule function is invoked.

In order to avoid redundant calculation yet minimize the over-
head, the schedule function has to be invoked properly. We imple-
mented two ways to invoke such the schedule function. The former
one occurs when the process voluntarily releases the faster core,
we have to invoke the scheduler directly for averting from losing
greater ability of faster core, while the latter one is a lazy way to
trigger the schedule function, invoked when we predict that there
will be suitable candidate to run on faster core.

3.1. Framework components

The proposed NUMA-aware AMP scheduler is composed of
two components, a runtime profiler and a scheduler. We use
OProfile [22] as our system-wide profiler, leveraging the hard-
ware performance counters to profile and analyze the statistic
information at low overhead. After a time interval, we dump
the profiling data to the data dealer. Once the data dealer receives
the profiling data, it will update the records. In case the current
situation cause the schedule function invoked, it computes two
dynamic metrics: Online AMP Speedup Factor and Contention
Degradation Factor. In addition, two important linked lists are
maintained, AMP-list and NUMA-list, according to the dynamic
values of metrics. In this way, the design method makes the data
dealer

Algorithm 1. PROFILER: online profiling mechanism

1 Create a new thread for receiving and dealing with the
online profiling data

2 Repeat profiling until NUMA-aware P-AMP scheduler
stop

3 Sleep for an OPROFILE_PERIOD amount of time

4 Dump the profiling report

5 End Repeat loop

Download English Version:

https://daneshyari.com/en/article/457750

Download Persian Version:

https://daneshyari.com/article/457750

Daneshyari.com

https://daneshyari.com/en/article/457750
https://daneshyari.com/article/457750
https://daneshyari.com

