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s u m m a r y

In most conditions, calibration is a prerequisite for successfully applying conceptual and physically based
rainfall–runoff models. The goal of this paper is to comparatively analyse the potential of both
event-based automatic calibration (PEST) as described in Skahill and Doherty (2006) and robust param-
eter estimation (ROPE) as proposed by Bárdossy and Singh (2008). The results of our modelling study in
the Rietholzbach catchment (Switzerland) show that ROPE performs better in validation of small to med-
ium sized events. This indicates that ROPE might be better suited to parameterise models when the mod-
ellers intention is focussed on a maximising the generalisation capacity of the model, e.g. for evaluating
transient process characteristics. We base our study on the hydrological model WaSiM-ETH, using a com-
bined ROPE and automatic parameter estimation approach to investigate optimal parameter sets. The
PEST algorithm used in this study outperforms the ROPE application by a factor of roughly 100 in terms
of time required for computation.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Generally, any model structure is merely approximating the
portrayed natural processes and data is almost always a restrictive
factor for setting up complex or physically based models (Wagener
et al., 2003). This makes modelling rainfall–runoff processes a chal-
lenging task which calls for comprehensive efforts. If flood fore-
casting in small catchments is considered this challenge becomes
even more difficult as the discharge behaviour is dominated by
highly nonlinear dynamic processes. This, amongst other reasons,
requires that models have to be adapted to a specific catchment
by a parameter vector, i.e. a set of hydrological parameters needs
to be calibrated. In this context, hydrological models are not yet
able to equally well describe the full range of processes that drive
the runoff generation. This holds both for simple conceptual mod-
els and detailed process models with physically based components.
Applicability of simple empirical and conceptual models is limited
to conditions represented within the data used for the calibration
of their respective parameters. Process-oriented models are sup-
posed to maintain system dynamics even beyond the range of cal-
ibration data, but often there are not enough data available to
satisfy the requirements of model equations. This leads us to
substituting detailed information with ‘‘effective’’ calibrated
parameters that work best on the data that is used for calibration.
This leads us to a model which works with physically based equa-

tions but which lacks process fidelity, some say it is ‘‘right for the
wrong reason’’. Besides missing data, one of the main reasons for
lack of process fidelity is that most models are not able to describe
the full range of natural dynamics. The lack of process fidelity can
be partly compensated for by adapting various parameter vectors
according to the actual dominant driving forces of the rainfall–run-
off processes. A number of approaches address this way forward.
Cullmann et al. (2008) propose an event specific classification
method to enable the application of an adequate parameter vector
to different classes of flood patterns. Along the same lines Fenicia
et al. (2007) had proposed the combination of local models, each
best describing a specific range of processes.

One of the keys to successful modelling of rainfall–runoff pro-
cesses in a specific catchment is the calibration itself. In a classical
way this task is formulated as a mathematical optimisation prob-
lem for a given single or multi-objective function. The result is a
single best performing parameter vector, or a set of equally well
performing parameter combinations. Equifinality and the missing
consideration of measurement errors can lead to over-fitted mod-
els, which consequently lack the robustness (ability to generalise)
required for operational purposes.

Parametrisation of hydrological models has been the subject of
enormous scientific effort throughout the last decades. Event-
based or subset-specific variance of best model parameter sets
may result from uncertainty of input data, observation data and
equifinality of the system (Beven and Binley, 1992). Merz and
Blöschl (2003) improved their model by dividing floods into five
classes, where different flood formation mechanisms (forces and
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runoff-generating processes) cause varying system response char-
acteristics on the basis of indicators such as timing, storm duration,
rainfall depth and catchment state. One main focus was scaling in
space, i.e. finding more or less homogeneous regions to be por-
trayed by parameter ranges determined either by a priori knowl-
edge or by calibration (Gupta et al., 1994; Gupta and Dawdy,
1995; Post and Jakeman, 1996). The results of these studies made
a valuable contribution to our general understanding of parametri-
sation of both conceptual and process models.

However, experience in rainfall–runoff modelling resulted in
the awareness that various best parameter sets apply to single
events or periods of time (Beven and Freer, 2001). This motivates
us to compare a classical optimisation procedure with an alterna-
tive methodology for model parameter estimation as described in
this paper.

With this study, we intend to contribute to the ongoing re-
search efforts in the field of model calibration. We compare the
widely used PEST algorithm and ROPE for calibrating WaSiM-ETH
on a consistent data set of hourly recordings from the well-ob-
served Rietholzbach catchment. The event-based calibration re-
sults in a number of optimal parameter sets, which are analysed
and compared to the results obtained with a comparable, event
based application of ROPE. ROPE is based on the concept of data
depth and uses information about the location of parameter vec-
tors in n-dimensional space as a means to discriminate between
possible parameterisations. Here, the goal is to search for parame-
ter sets that perform well in terms of error criteria and which fulfil
geometric criteria representing the robustness of a parametrisa-
tion. PEST is a classical search algorithm that is focused on finding
minima in error surfaces. A new idea which includes additional
information (the data depth) for parameterising models is bench-
marked against a classical optimisation approach. Thus we are able
give first estimates on additional possibilities ROPE might bring
about for calibrating models in watersheds, especially in cases
when process characteristics are transient. The joint application
of both methodologies offers an additional means of evaluating
model parameter identifiability in the context of specific event
characteristics reflected by the results of automatic calibration.
The analysis in this paper is restricted to selected model parame-
ters, which are well suited to show the potential of the two
methods.

2. Material and methods

2.1. Study area, data and model

The Rietholzbach drains a 3.18 km2 hilly pre-alpine watershed
with an average precipitation of 1600 mm per year, generating a
mean annual runoff of 1046 mm. It is located in north-eastern
Switzerland, in the centre of the Thur basin (Fig. 1), with elevations
ranging from 681 to 938 m a.s.l. The land use mainly consists of
pasture (67%), the rest being dominated by forest (25%) including
a few settlement areas (Table 1).

The soil types range from gley soils to more permeable brown
soils and regosols with relatively large soil water storage capaci-
ties. The catchment is equipped with a meteorological station, con-
tinuous time domain reflectometry (TDR) soil moisture
measurements, one weighing lysimeter at a pasture site and a
well-defined runoff profile at Rietholzbach gauging station. Data-
sets for the meteorological input parameters (temperature, humid-
ity, wind, global radiation and precipitation) as well as for soil
moisture at a single location (four TDR probes in depths of 15,
55, 80 and 110 cm) and runoff at the catchment outlet were avail-
able for the period 1981–2007 (Courtesy of ETH Zürich). In our

study we focussed on the largest 24 summer runoff events that
we extracted from the flow data of 27 years.

For hydrological modelling of the catchment we used the pro-
cess-oriented, distributed model WaSiM-ETH (Schulla, 1997;
Schulla and Jasper, 2001; Gurtz et al., 2003; Zappa et al., 2003) with
a spatial resolution of 50 m. WaSiM transforms rainfall into runoff
according to the scheme shown in Fig. 2. Direct runoff (Qd) is gen-
erated at the soil surface. A variable number of soil water compart-
ments (three in Fig. 2) process infiltration from the Green and
Ampt approach. Water is transported into the respective deeper
sol layers, interflow (Qifl) is generated in each soil compartment.
Qd is cellwise transferred to the basin outlet; a specific travel time
is used to mimic retention. Diffusion is expressed by means of a
simple bucket type function (Eq. (1)). The recession coefficient of
this function is kd.

Qd ¼ Qdi�1 � e�Dt=Kd ð1Þ

where Qd is the direct runoff and Qd(i�1) is the runoff in the preced-
ing time step Dt. The soil water movement through the layers is
modelled by means of a discretised form of the continuity equation.

DH
Dt
¼ Dq

Dz
¼ qin � qout ð2Þ

Here DH denotes the change in soil water content, Dt defines
the time step, Dq is the change in specific flux. The fluxes qin and
qout characterize the influx and efflux from the specific soil layer
respectively. Finally, Dz defines the thickness of the soil layer.
The Van-Genuchten parameters used for the solution of the Rich-
ards equation are not subject to calibration in this study. Each soil
layer produces interflow (Qifl) according to (Eq. (3)), which is cell-
wise scaled with dr.

Qifl ¼ ksðHmÞ � Dz � dr � tan b ð3Þ

where ks = effective hydraulic conductivity as described in Schulla
and Jasper (1998), Hm = Soil moisture of the specific layer, dr = sca-
lar and b denotes the slope.

The interflow is again transferred to the watershed outlet by
means of the flow-time grid and a second bucket type function.
Herein, ki represents the recession coefficient in analogy to (Eq.
(1), kd). The soil layers are topping the compartment from which
base flow is generated by means of a simple, empirical approach.
More details about WaSiM are documented in Schulla (1997) and
Schulla and Jasper (1998).

According to previous studies with WaSiM-ETH in the context
of flood forecasting (see Cullmann, 2007; Pompe, 2008) we choose
the following three conceptual model parameters to be considered
for calibration: the recession coefficients for storage of direct run-
off kd and interflow ki and a scaling parameter for the generation of
interflow dr in the unsaturated zone. Reference parameters as
shown in Table 2 are derived from Pompe (2008).

2.2. Event-based parameter estimation

Two approaches for parameter estimation are implemented in
PEST; both methods try to minimise an objective function that is
represented by least squares. PEST requires user specified parame-
ter ranges and start values to optimise the given model. The stan-
dard method uses the Gauss–Marquardt–Levenberg (GML)
algorithm. The drawback of this method is that the algorithm
might converge to local minima, depending on the error surface
and the start values for the optimisation run. This nonlinear
parameter estimation algorithm is fast and stable as it switches be-
tween the steepest gradient search and the Gauss–Newton ap-
proach, depending on a scalar of the identity matrix (details in
Mohamed and Walsh (1986)). The second method supplied with
the PEST suite is the global SCEUA (shuffled complex evolution –
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