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s u m m a r y

Numerical simulation of saturated–unsaturated subsurface flows is widely used in many branches of
science and engineering, and rapid developments in computer technology have enabled not only
one-dimensional but also multi-dimensional simulations on a personal computer. However, a multi-
dimensional subsurface flow simulation still incurs heavy load on computational resources, particularly
for simulations in wide regions with long periods. An Iterative Alternating Direction Implicit (IADI)
scheme has certain advantages in terms of computational cost and algorithmic simplicity. However, it
is barely used at present because it occasionally incurs numerical instabilities and convergence difficul-
ties. Another reason is that three-dimensional simulations cannot be performed by the original IADI
scheme. This study has proposed an advanced IADI algorithm for solving the saturated–unsaturated flow
equation; this advanced scheme is more numerically stable than the original IADI scheme and can be
used for three-dimensional simulations. The performance of the proposed scheme was assessed through
test simulations. In all the simulations, the new method was shown to be faster than the fully implicit
scheme linearized by the modified Picard iteration method while still yielding very similar results.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Numerical simulation of a saturated–unsaturated subsurface
flows is widely used in many branches of science and engineering,
including agricultural engineering, ground water engineering,
chemical contaminants tracing, and rainfall–runoff modeling. A
variety of numerical models have been proposed on the basis of
the finite difference, finite element, and finite volume methods to
simulate a saturated–unsaturated flow (e.g. Celia et al., 1990;
Clement et al., 1994; Forsyth et al., 1995; Jones and Woodward,
2001; Manzini and Ferraris, 2004; Simunek et al., 1999; Tocci
et al., 1997). In particular, methods using finite difference
algorithms have demonstrated advantages in terms of the ease of
coding and understanding owing to their simplicity compared with
the other two methods. Rapid developments in computer technol-
ogy have made it possible to carry out not only one-dimensional
(Dane and Mathis, 1981; Haverkamp and Vauclin, 1981) but also
multi-dimensional simulations (Clement et al., 1994; Dogan and
Motz, 2005; Simunek et al., 1999; Weeks et al., 2004) using a
personal computer. However, a multi-dimensional subsurface flow
simulation still requires considerable computer resources,

particularly for simulations in wide regions with a relatively fine
grid resolution.

The alternating direction implicit (ADI) approach and Iterative
ADI (IADI) were very popular in the 1970s for avoiding the solution
of large, sparse linear systems arising from the implicit discretiza-
tion of parabolic partial differential equations in 2D and 3D. The
IADI scheme is an iterative adaption of the ADI method, which dis-
cretizes the equation into a simultaneous system of difference
equations that are solved iteratively. Since then, the method has
been rarely used in favor of the preconditioned Krylov subspace
iteration and even sparse direct solvers. However, the IADI ap-
proach has advantages over Krylov solvers in terms of simplicity
and cost (on a per iteration basis) because only tridiagonal linear
systems are involved in the procedure of the calculation. Optimal
Krylov subspace solvers need preconditioners based on multigrid
or domain decomposition, which introduce considerably more pro-
gramming complexity than the IADI method. Furthermore, the
computational cost for tridiagonal linear systems is comparatively
cheap and proportional to the problem dimension. This implies
that the computational cost of the IADI method is expected to be
scalable, while the computational cost of the preconditioned
Krylov subspace solvers typically increases faster than the problem
dimension does. Therefore, if the IADI algorithm overcomes short-
comings such as the instability and convergence difficulty, which
will be discussed in the next paragraph, it could be an attractive
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alternative for simulating a saturated–unsaturated flow in porous
media. The objective of this study is to propose an improved IADI
algorithm for a multi-dimensional saturated–unsaturated flow.

The study by Rubin (1968) was probably the earliest to simulate
a two-dimensional transient groundwater flow using the IADI
method. Following this study, the IADI method has been used in
several studies (e.g. Cooley, 1971; Parissopoulos and Wheater,
1988; Perrens and Watson, 1977; Weeks et al., 2004) to simulate
a two-dimensional saturated–unsaturated flow in porous media.
All these models solved the pressure-head-based form of the Rich-
ards equation (Richards, 1931). However, Celia et al. (1990) stated
that numerical methods using the pressure-head-based form of the
Richards equation result in a poor mass balance in the unsaturated
zone because of the highly non-linear constitutive relationship be-
tween the pressure head and the moisture content. These authors
showed that solutions based on a mixed form of the Richards equa-
tion are more accurate than those based on the pressure-head-
based form and satisfy the mass balance. Moreover, Clement
et al. (1994) claims that the IADI scheme is not robust because it
incurs numerical instabilities and convergence difficulties in solv-
ing two-dimensional non-linear equations. This is one of the rea-
sons for rarely using the IADI technique at present. The other
reasons might be that the IADI scheme cannot be used for solving
three-dimensional problems and that the finite difference-based
scheme is limited for real multi-dimensional applications involving
complex geometries. To solve the latter problem, we can consider
the use of a coordinate transformation method (e.g. Jie et al., 2004;
Kinouchi et al., 1991; Koo and Leap, 1998a,b; Ruhaak et al., 2008)
or an adaptively refined grid approach (Li et al., 2000) in combina-
tion with the IADI scheme.

In this study, in order to overcome the numerical instabilities
and applicability of the three-dimensional simulations of the origi-
nal IADI method of Rubin (1968), we derived a new equation from
the ADI method of Douglas and Rachford (1956). The newly de-
rived equation can be applied to two- and three-dimensional prob-
lems and shows improved stability. To evaluate the proposed
method, five test simulations were conducted, and the results were
compared with those of the original IADI scheme and the fully im-
plicit scheme linearized by the modified Picard iteration method.

2. Theory

The mixed form of the Richards equation is generally consid-
ered to have advantages in terms of the mass balance and the con-
vergence behavior, which is written as

@h
@t
¼ r � KðwÞrwþ @KðwÞ

@z
; ð1Þ

where w is the pressure head, h is the volumetric moisture content,
K is the hydraulic conductivity, t is the time, and z denotes the ver-
tical dimension, assumed to be positive upwards. Further, it is as-
sumed that appropriate constitutive relationships between h and
w and between w and K are available. The source/sink term has
been ignored for the sake of simplicity. Because Eq. (1) includes
both h and w, it is called the mixed form.

2.1. Picard iterative linearization

The backward Euler scheme is one of the most widely used time
approximation for the Richards equation and used in this study.
Since the system of the equation is non-linear because of the
non-linear dependency of h on w, iterative calculation and lineari-
zation are needed. Although several iterative schemes have been
proposed (e.g. Bergamaschi and Putti, 1999; Fassino and Manzini,
1998; Kavetski et al., 2002; Paniconi and Putti, 1994), from a
practical viewpoint, the Picard method is used in this study

because it is simple and exhibits a good performance in many
problems (Lehmann and Ackerer, 1998; Paniconi and Putti,
1994). The backward Euler approximation and Picard linearization
of the two-dimensional Eq. (1) is written as
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where the superscripts n and m denote the time level and the iter-
ation level, and x denotes the horizontal dimension.

The moisture content at the new time step and a new iteration
level (hn+1,m+1) is replaced with the Taylor series expansion with re-
spect to w, about the expansion point wn+1,m as follows:

hnþ1;mþ1 ¼ hnþ1;m þ dh
dw

����
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Neglecting the higher-order terms in Eq. (3) and substituting
this equation into Eq. (2) gives
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where C(=dh/dw) is the specific moisture capacity function. A finite
difference approximation of Eq. (4) can be written as
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and subscripts i and j denote the spatial coordinates in the x and z
axes, respectively. Eq. (5) represents the same method proposed by
Clement et al. (1994), except that this equation ignores the specific
storage term. These linearized simultaneous equations are solved
using matrix solvers such as the LU decomposition or precondi-
tioned conjugated gradient methods. In this study, LIS (a library of
iterative solvers for linear systems), developed by Kotakemori
et al. (2005), was used for solving the linear equations. LIS provides
several preconditioners and iterative solvers for linear systems.
Conducting the test simulations, we selected a pair of SSOR precon-
ditioner and biconjugate gradient stabilized (BICGSTAB) methods,
which was shown to be faster and more stable than the other pairs
provided by the LIS library. The pressure head at the (n+1)th time
level and the (m+1)th Picard iteration level were obtained solving
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