
Hardware security platform for multicast communications

José M. Granado-Criado ⇑, Miguel A. Vega-Rodríguez, Juan M. Sánchez-Pérez, Juan A. Gómez-Pulido
Department of Computers and Communications Technologies, University of Extremadura, Escuela Politécnica, Campus Universitario s/n, C.P. 10003 Cáceres, Spain

a r t i c l e i n f o

Article history:
Received 4 December 2012
Received in revised form 23 September 2013
Accepted 17 November 2013
Available online 27 November 2013

Keywords:
Security platform
Multicast communications
Group key management
System on chip
Logical Key Hierarchy
Advanced Encryption Standard

a b s t r a c t

Secure multicast applications of multimedia contents, such as Internet TV, pay per view, satellite TV, etc.,
need to maintain a high number of keys. In these applications, a user contracts a group of channels or
even specific content (films, sports, etc.) which do not have to coincide with the services contracted by
other users, so different keys are needed to encrypt the contents. These keys must be recalculated,
encrypted and redistributed when a user joins or unjoins a specific group in order to prevent users
who do not belong to a group from being able to access the contents. Original algorithms generate only
one group key for all users, so this key must be recalculated and resent when a user joins or unjoins in the
user group. This is an important problem, because a group key could be changed even when one content
is performing. This paper presents a high performance implementation of one of the most employed algo-
rithms of group key maintenance, the LKH algorithm, using reconfigurable hardware and a very high and
realistic number of users (8,388,609). The performance obtained by this study improves a lot other
results found in the literature in terms of both performance and number of users.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Currently, services like pay-per-view, IP television, and satellite
television are at their height. These applications encrypt their
content to prevent users who have not contracted the content from
being able to access it. Other applications like Digital Video
Broadcasting (DVB) encrypt their content to restrict the broadcast-
ing area. So, a user key and a group key (the key used to send the
encrypted content to all users) must be sent to each user. However,
the group key is recalculated when users join or unjoin the group.
Moreover, when the group key is recalculated, it is also encrypted
with every user key before these are sent, in order to ensure that if
an unauthorized person accesses the key he will not be able to
access the content. The encryption of a new group key could be a
high computational task if the number of users was very high. In
Fig. 1, where every user has their own key plus the group key,
the number of encryptions when the group key is changed is equal
to the number of users. Obviously, a scalability problem arises.

The main contribution of this paper is to create a hardware
platform to perform the group key management. In this way,
several improvements of cryptographic modules have been
implemented (a complete description of these improvements can
be seen in the following sections):

� AES module: several operations have been parallelized. More-
over, some phases of AES have been combined to reduce the
number of clock cycles needed to perform an encryption.
� Hash module: this module has been modified to combine the

operations of Matyas–Meyer–Oseas Hash Function [16] with
the own cryptographic module used, in this case AES. Therefore,
the hash module can perform a hash operation so fast as the AES
module.
� MAC module: this module has been changed in the same way as

the hash module, that is, combining the own MAC operation
with the AES module with the same result in terms of
performance.
� RSA Module: This module implements a highly improved ver-

sion of RSA public cryptographic algorithm. Particularly, this
module implements a bit parallel version of Montgomery Mod-
ular Multiplication and 8-bit carry out adders, reducing the
complete number of clock cycles needed for this very expensive
operation.

Finally, a dual core implementation has been employed. The
architecture has two MicroBlaze processors in order to combine
the new keys generation and the LKH tree modification.

The problem of group key management has been addressed in
recent years as a means of reducing the rekeying costs and achiev-
ing a scalable group key management. Paper [1] shows an LKH
implementation using FPGAs, which uses a PowerPC-based Sys-
tem-on-Chip architecture to implement a security platform.

In [2–4] an n-ary tree implementation of a group key tree is pre-
sented; Refs. [3,4] show theoretical results, hence comparison with

1383-7621/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.sysarc.2013.11.007

⇑ Corresponding author. Tel.: +34 927 25 70 00; fax: +34 927 25 72 02.
E-mail addresses: granado@unex.es (J.M. Granado-Criado), mavega@unex.es

(M.A. Vega-Rodríguez), sanperez@unex.es (J.M. Sánchez-Pérez), jangomez@unex.es
(J.A. Gómez-Pulido).

Journal of Systems Architecture 60 (2014) 11–21

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2013.11.007&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2013.11.007
mailto:granado@unex.es
mailto:mavega@unex.es
mailto:sanperez@unex.es
mailto:jangomez@unex.es
http://dx.doi.org/10.1016/j.sysarc.2013.11.007
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


these two references will not possible in the comparison section.
The problem of an n-ary tree to implement the key tree is that
the search of a free leaf is more expensive than a binary tree. So,
in this paper a binary group tree has been chosen in order to reduce
the complexity of the search functions and of the Key State
Memory.

Papers [5] and [6] present a balanced LKH implementation. Both
present simulated results and hence it is not possible to make fair
comparison with these studies. These studies’ main aim is to
reduce the number of keys stored in the system. The problem of
these works is that keeping balanced the tree continuously entails
a performance penalization and do not reduce the employed
memory. However, in the present work the main aim is to increase
the performance in the key management, so keeping the Logical
Key Tree balanced all the time is not necessary.

In paper [7] a complete key management protocol is proposed,
and finally in researches [8], [9], [10] other different key manage-
ment algorithms are implemented, specifically SDR, NSBHO and
WPMKT. The present paper implements the LKH key management
method because it reduces the number of encryptions needed
when a user joins or disjoins a group. Moreover, due to it is a bin-
ary tree based algorithm, it is very fast to find a free leaf when it is
necessary.

Summarizing the above paragraphs, some works solve the pre-
sented problem by different ways, but they bring some perfor-
mance penalizations due to either their search functions (n-ary
trees) or in their tree management (keeping balanced the tree all
time). Moreover, a very preliminary version of this paper was pub-
lished in the proceedings of a national conference [11]. This paper
has been greatly extended and improved. The earlier version does
not include the MAC, Hash and RSA modules. Accordingly, that
implementation was an incomplete security platform, which only
includes the key management; no other security methods were
implemented. These security modules guarantee security at all
steps in the multicast communication process; in particular, they
prevent unauthorized data modification and sender identification.

This paper presents a hardware implementation of one of the
best-known techniques in the key management problem, specifi-
cally the Logical Key Hierarchy (LKH) algorithm, which reduces
the number of encryptions needed to resend a group key by divid-
ing the users into subgroups, each with one subgroup key. Some of
these new subgroup keys will also be recalculated when a new
group key is needed, so the number of keys generated increases.
However, the number of encryptions needed to resend a group
key to all users is reduced. Table 1 shows the number of encryp-
tions needed in the LKH and the basic techniques. For example, if

a number of users of 8,388,608 is employed (which is the number
of users assumed in this paper), the number of encryptions for one
joining and one unjoining is reduced from 8,388,609 (2+8,388,607)
in the basic technique to 90 (46+44) in LKH.

The hardware platform designed consists in an embedded
implementation using a hardware reconfigurable device (FPGA).
Specifically two MicroBlaze soft-processors have been used to
implement a System-on-Chip architecture with several crypto-
graphic hardware coprocessors.

This paper is structured as follows: Section 2 shows the key
management algorithm employed in this study, including the
LKH description, the key generation algorithm and the memory
organization. In Section 3 all the cryptographic modules and their
hardware implementations are described. Section 4 presents the
complete hardware architecture implemented. Section 5 analyzes
the final results, comparing them with results found in other
researches, and finally conclusions are stated in the last section.

2. Description of the key management algorithm

2.1. Logical Key Hierarchy

The Logical Key Hierarchy (LKH) [12] consists in storing a com-
plete group of users in a binary tree. In this tree, the root node is
the group key, every leaf node is a user key and every inner node
is a subgroup key (called help-keys). These help-keys allow a
reduction in the number of encryptions needed when a user joins
or unjoins the group. This means that one user must store several
keys, specifically its identifier key (Ki), which is known only by that
user and the server, the group key (Kg), known by all group mem-
bers, and every help-key (Ki�j) between the group key and that
user in the key tree.

As indicated previously, the help-keys reduce the number of
encryptions needed when, for example, a user unjoins the group.
In that case, in order to prevent that user being able to access
future content, a new group key must be generated. In the basic
technique, when a new group key is generated, it must be
encrypted by every user key; hence there is a very high computa-
tional cost task if the number of users is substantial. However, if
the LKH method is employed, only two encryptions of the group
key are needed, specifically one for the left branch and one for
the right branch. On the other hand, all the help-keys stored by
the former user must be recalculated again, encrypted and sent
to their corresponding users. However, the number of encryptions
needed to send the new help-keys is much lower than the number
of encryptions in the basic techniques.

For example, Fig. 2(a) shows a complete LKH with eight users. If
user 4 unjoins the group, all his keys are obsolete, that is, Kg,
K4–7 and K4–5, so they must be recalculated (K0g, K04–7 and K04–5).
In this case, the following encryptions are made (where Ek(X)
indicates that X is encrypted using key K): EK5(K04–5), EK4–5(K04–7),
EK6–7(K04–7), EK0–3(K0g), EK04–7(K0g). Because this is a very simple
example, only 2 encryptions are saved as compared with the basic
technique where seven encryptions are needed. However, if the
number of users is higher, the encryption decreases exponentially.
Moreover, another encryption can be saved if the tree does not
store help-keys in nodes which do not have users in both branches
(for example node K4–5 after user 4 disjoins the group). This
makes operation EK5(K04–5) unnecessary and changes operation
EK4–5(K04–7) to EK5(K04–7). Fig. 2(b) shows this situation.

In order to know if a specific node has both left and right users,
another tree structure must be employed: the Key State Memory
(KSM). The KSM stores, only for the root and the help-key nodes,
a four-state (two-bit) value which indicates whether there are
users in the branches of the corresponding node. The KSM does

Table 1
Number of encryptions needed for n users in the basic technique and in the LKH
technique.

Basic technique LKH

User join 2 2 � log2 n
User unjoin n � 1 2 � (log2 n � 1)
Average O(n) O(logn)

K0 K1 K2 K3 K4 K5 K6 K7

Kg

Fig. 1. Basic group key management technique.

12 J.M. Granado-Criado et al. / Journal of Systems Architecture 60 (2014) 11–21



Download	English	Version:

https://daneshyari.com/en/article/457765

Download	Persian	Version:

https://daneshyari.com/article/457765

Daneshyari.com

https://daneshyari.com/en/article/457765
https://daneshyari.com/article/457765
https://daneshyari.com/

