
Fast and standalone Design Space Exploration for High-Level Synthesis
under resource constraints

Adrien Prost-Boucle, Olivier Muller, Frédéric Rousseau ⇑
TIMA Laboratory – CNRS/Grenoble-INP/UJF, 46 Avenue Félix Viallet, Grenoble, France

a r t i c l e i n f o

Article history:
Available online 14 October 2013

Keywords:
High-Level Synthesis
Design Space Exploration
FPGA
Hardware accelerators
Resource constraints

a b s t r a c t

The very high computing capacity available in the latest Field Programmable Gate Array (FPGA) compo-
nents allows to extend their application fields, in High-Performance Computing (HPC) as well as in
embedded applications. This paper presents a new methodology for Design Space Exploration (DSE) in
the context of High-Level Synthesis (HLS) for HPC and embedded systems targeting FPGAs.

This new methodology provides very quickly an RTL description of the design under resources con-
straints. An autonomous flow is described, that performs incremental transformations of the input design
description. The low complexity of the transformation evaluation, decision and exploration algorithms,
associated with a greedy progression, makes this DSE methodology very fast. Moreover, this methodology
respects a strict resource constraint given as bare FPGA primitive amounts. Hence, the generated design
fits into the targeted FPGA or a partition of it. Such a methodology leads to autonomous, fast and trans-
parent DSE, all these issues known to limit the use of HLS.

Results on several benchmarks highlight the capabilities of our DSE methodology. The results show a
high generation time speed-up compared to one other existing HLS approach, while preserving correct
performance of the generated circuits.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

FPGAs have been widely considered for integration in the field
of embedded systems such as telecommunication applications,
automotive, as well as High-Performance Computing [1], and
supercomputers [2]. They are considered as efficient solutions, that
typically provide power consumption gain and acceleration of one
to three orders of magnitude over CPU or GPU implementations.
FPGAs now provide huge computing capacity and require efficient
design flows able to program them.

Register Transfer Level (RTL) languages are typical entry points
of usual tool flows. In spite of their fitness to precisely describe all
details of the architecture, RTL descriptions are cumbersome for
architecture exploration. There is a huge space to give a higher
abstraction description of the design removing useless details. In
that case, a High-Level Synthesis (HLS) tool is required to trans-
form this high abstraction model to RTL. HLS tools enable to reach
better productivity, measured by the time to get an acceptable
solution, compared to a direct RTL design. From a generic input
algorithm, HLS tools usually generate an RTL architecture for a

given target technology. Special user performance goals (area, fre-
quency, throughput, power, . . .) can be taken into account.

Current HLS flows enable the user to quite rapidly explore the
design space [3]. As shown in Fig. 1, each RTL generation is ana-
lyzed by the user who can then command the HLS tool (with user
directives) to converge towards’ a better solution in the next trial.
This manual user guided interaction slowdowns the Design Space
Exploration (DSE) process, and is only acceptable for well-informed
users. It is far from the traditional compilation process for CPU or
GPU which may be done without any knowledge of the compiler
or processor architecture, with an automatic tool flow. Despite
their intrinsically lower performance, CPU and GPU get a better
acceptance for embedded system designers due to their fast and
autonomous tool flows.

Consequently, we are looking to provide a DSE methodology
that is able to produce quickly an efficient RTL design, with or
without user interaction.

Thus, in order to be autonomous, the flow has to strictly adapt
to the amount of resources of the target. To target a full FPGA or a
part of it (this latter target is mandatory in dynamic partial recon-
figuration [4] or floorplanning contexts), the amount of resources
combines the amounts of all FPGA primitives (e.g. LUT, FF, RAM,
DSP block). Using these generic FPGA primitives enables to ease
the support of new FPGA technology, obviously a desired feature
of the DSE flow.

1383-7621/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.sysarc.2013.10.002

⇑ Corresponding author. Tel.: +33 476574641.
E-mail addresses: adrien.prost-boucle@imag.fr (A. Prost-Boucle), olivier.muller

@imag.fr (O. Muller), frederic.rousseau@imag.fr (F. Rousseau).

Journal of Systems Architecture 60 (2014) 79–93

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2013.10.002&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2013.10.002
mailto:adrien.prost-boucle@imag.fr
mailto:olivier.muller @imag.fr
mailto:olivier.muller @imag.fr
mailto:frederic.rousseau@imag.fr
http://dx.doi.org/10.1016/j.sysarc.2013.10.002
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


This paper describes a DSE methodology for HLS, which means
that the targeted functionality is going to be implemented into
dedicated hardware. In particular, issues involving system-level
DSE or hardware/software partitioning are not tackled here, even
if system-level DSE tools could greatly benefit from HLS tools fea-
turing the proposed methodology. The proposed DSE methodology
is fast and autonomous, and is able to respect user constraints
(hardware resource and frequency). Conceptually, it applies to
any FPGA technology, and it could be quite easily integrated in
existing HLS tools.

The rest of this paper is organized as follows. The Section 2 pre-
sents the background and the related HLS tools. Section 3 describes
our proposed methodology. The implementation details are given
in Section 4. Performed experiments on benchmarks and results
are given and discussed in Sections 5 and 6.

2. Background and related works

This paper deals with a rather specific topic, namely fast and
standalone DSE for HLS under resource constraints. DSE involving
HLS has been proposed under various forms, from the fields of
HLS-DSE as well as system-level DSE. The most relevant of them
are described hereafter to fully explain the choices that led to the
present works.

2.1. System-level DSE approaches

System-level DSE approaches present interesting properties.
They generally consist in deciding which functionalities of a con-
sidered system will be implemented in hardware accelerators.
The targeted platforms are then heterogeneous. As described in
[5], this heterogeneity leads to highly modular DSE environments,
where an exploration tool specifically optimized for DSE exploits
external tools as target-specific estimators (e.g. for latency and
power).

A DSE environment for virtual prototyping of Systems-on-Chips
(SoC) is proposed in [6]. Authors’ objective is to consider func-
tional, power and timing behaviour at system-level, under explicit
partitioning and mapping to a specific implementation platform.
They propose to use Matlab/Symulink with MARTE/UML models.
Commercial HLS tools perform the estimations. However, no
details about DSE algorithms are given and no results are
presented.

Very complex DSE methodologies can be considered with
exploration tools dedicated to DSE. In [7], a highly modular frame-
work is proposed for multi-dimensional Multi-Processor SoC (MP-
SoC). It can use different search algorithms to explore the various

dimension of the design space, with the objective to find better
solutions than with a single search algorithm.

System-level DSE approaches are certainly interesting for mod-
ularity and reusability. The specialization of these approaches for
DSE can make them efficient solutions, at least for heterogeneous
platforms. However, in the context of the present paper, these
properties come with costs. High-level generic models lead to pos-
sible accuracy losses and to inter-tool communication overhead
due to model translations. Results could also present serious sub-
optimality due to low exploitation of target-specific properties.
Abstraction models also makes physical platform generation
difficult.

Reducing genericity can be considered to meet accuracy goals.
In [8], a hardware/software partitioning DSE framework is
proposed. The exploration tool is tightly coupled to an external
HLS tool, GAUT [9], which generates hardware accelerators under
latency or throughput constraints. For one hardware accelerator,
the DSE methodology is an iterative increment of the latency con-
straint (in clock cycles). For each constraint value, GAUT generates
a solution, and the resource usage is considered. However resource
constraints are only indirectly considered, and only data-flow cir-
cuits can be handled.

Performing early estimations of the performance of heteroge-
neous systems is also possible. The methodology proposed in
[10] facilitates the simulation of an entire HW/SW system to de-
cide whether the effort of transforming a given computation core
into hardware is needed. However their approach is focused on la-
tency and does not guarantee that the considered application will
fit into a given FPGA after actual synthesis.

The present works are focused on HLS-DSE, which means it is
taken for granted that the considered application is to be imple-
mented in hardware. In our context, the drawbacks of these sys-
tem-level approaches (limited accuracy and platform generation
ability, potentially high inter-tool interfacing overhead) are not
affordable or inappropriate. This is why in the proposed HLS-DSE
approach, exploration and estimation methods are tightly coupled
and embedded in one unique tool. Besides, such a tool could fit
well into a more system-level framework, as an external estimator
tool for FPGA.

2.2. HLS and HLS-DSE approaches

As explained in [9], historically, the HLS generation flow is com-
monly composed of three interdependent steps: allocation,
scheduling and binding. Allocation sets the number and kind of
resource units in the resulting circuit (i.e. computation, storage,
routing). Scheduling assigns each operation to one or several clock
cycles, while ensuring data dependencies are respected. Binding

Fig. 1. Current HLS flows.

80 A. Prost-Boucle et al. / Journal of Systems Architecture 60 (2014) 79–93



Download English Version:

https://daneshyari.com/en/article/457771

Download Persian Version:

https://daneshyari.com/article/457771

Daneshyari.com

https://daneshyari.com/en/article/457771
https://daneshyari.com/article/457771
https://daneshyari.com

