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s u m m a r y

A theoretical model for the analysis of the reflection and refraction of obliquely incident elastic waves
upon the interface between two semi-infinite porous elastic half-spaces saturated by different fluid mix-
tures is developed in the present study based on the poroelasticity theory of Lo et al. (2005) and the nor-
mal coordinates derived by Lo et al. (2010) for describing the modes of dilatory motion. The amplitude
and energy ratios of the reflected and refracted waves generated from either an incident P1 wave (the
first dilatational wave) or an incident SV wave (the shear wave polarized in the vertical plane) are in turn
theoretically determined for the first time with respect to the angle of incidence. As a representative
example, a numerical simulation is conducted for Lincoln sand permeated by an air–water mixture in
the lower half-space and Columbia fine sandy loam permeated by an air–water mixture in the upper
half-space. Our numerical results indicate that regardless of the type of pore fluid mixtures and porous
media, the sum of the energy ratio of the reflected and refracted waves is always equal to unity, a result
that indeed can not be achieved if the normal coordinates for dilatory motional modes is not taken into
account as to represent the Helmholtz potential of the reflected and refracted waves. In addition, their
amplitude and energy ratios are shown to be significantly affected by the angle of incidence. It is also
revealed that as a SV wave is incident upon the interface, a critical angle of 31� and 33� can be found
for the reflected and refracted P1 waves respectively, while the occurrence of the critical angle is not
observed for the case of an incident P1 wave.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decades, the theoretical study on the reflection and
refraction of obliquely incident elastic waves upon the interface
between two fluid-containing poroelastic half-paces bas been of
great interest to a variety of scientific fields, such as soil science,
agriculture engineering, geomechanics, resource engineering, and
hydrogeology (Deresiewicz, 1960; Deresiewicz and Rice, 1962,
1964; Sharma and Gogna, 1992; Roeloffs, 1996; Sharma, 2004; Arora
and Tomar, 2007). A better understanding of quantitative informa-
tion inferred from reflection and refraction wave characteristics is
crucial for seismic methods in imaging the spatial distribution of
hydrological and geological properties, such as permeability, poros-
ity, and moisture variations in sedimentary materials, a sufficient
level of which allows for the accurate description of water
transport and contaminant movement in subsurface environments
(Domenico, 1974; Geller and Myer, 1995; Bachrach and Nur, 1998;
Adamo et al., 2004; Blum et al., 2004; Gorodetskaya, 2005).

An analytical model describing the reflection and refraction of
elastic waves at the interface between two fluid-bearing porous
media was first developed by Geertsma and Smith (1961), wherein
wave incidence was presumed particularly to be in a normal direc-
tion. Deresiewicz and Levy (1967) studied the behavior of the
reflected and refracted seismic waves in multiple layers of fluid-
saturated porous media. An extension to a more general situation
of an oblique incidence upon a plane interface was conducted by
Hajra and Mukhopadhyay (1982). Wu et al. (1990) calculated the
energy coefficient for the reflection and refraction of an obliquely
incident wave upon the interface between a fluid and a fluid-
permeated porous medium. The reflection and refraction of plane
elastic waves at the loosely-bonded interface between an elastic
solid and a fluid-containing porous medium were discussed by
Vashisth et al. (1991), and then the energy ratio was depicted in
terms of interface bonding constants. Sharma and Saini (1992)
investigated the influence of pore alignment on the amplitude
and energy ratios of the reflected and refracted waves at the inter-
face between two different fluid-saturated poroelastic half-spaces.
Lin et al. (2005) determined the surface displacement, surface
strain, and energy partitioning for a plane wave reflecting in an
inviscid fluid-saturated poroelastic half-space. Based on the work
of Tuncay and Corapcioglu (1997) who showed three dilatational
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waves (termed P1–P3) and one shear wave exist in an unsaturated
porous medium, Tomar and Arora (2006) pioneered the study of
the reflection and refraction of incident elastic waves for a two-
fluid system in a porous half-space underlain by an elastic nonpo-
rous half-space. A numerical study later conducted by Arora and
Tomar (2007) demonstrated that there is the existence of four re-
flected waves (P1–P3, and SV) and four refracted waves (P1–P3,
and SV) when a P1 wave is incident upon the interface between
two elastic porous half-spaces saturated by different fluid mix-
tures, but the effect of inertial coupling between solid and fluids
was not taken into account in their study. In recent times, Arora
and Tomar (2008) have employed the poroelasticity theory of Lo
et al. (2005) where the effect of inertial coupling was systemati-
cally represented to examine its impact on the amplitude ratio of
the reflected and refracted waves by comparing the results with
those previously obtained by Arora and Tomar (2007).

Despite these advances, none of them, until now, have consid-
ered the existence of the normal coordinates for the solid and fluid
dilatations, from which six connecting coefficients have been de-
rived to specify their motional modes (Lo et al., 2010). In addition,
it has been long demonstrated that three dilatational waves can
be observed in an unsaturated porous medium (Santos et al.,
1990; Tuncay and Corapcioglu, 1997; Lo et al., 2005), but the poten-
tial of these three waves was not completely represented in each
potential of the reflected and refracted dilatational waves. In the
present study, based on the general poroelasticity model of
Lo et al. (2005) and the normal coordinates derived by Lo et al.
(2010), the dynamics of the reflection and refraction of incident
elastic waves upon the interface between two semi-infinite porous
half-spaces containing distinct fluid mixtures was analytically
examined in a systematic manner. To determine the amplitude
and energy ratios of the reflected and refracted waves quantita-
tively, a numerical simulation is taken on for Lincoln sand saturated
by an air–water mixture in the lower half-space and Columbia fine
sandy loam saturated by an air–water mixture in the upper half-
space as a function of the angle of incidence. Two different types
of incident wave are investigated: the first dilatational wave (P1)
and the shear wave polarized in the vertical plane (SV).

2. Model equations

A set of coupled partial differential equations of momentum
balance for two-phase fluid flows in a deformable porous medium
in the absence of body force was derived in an Eulerian framework,
which takes the form (Lo et al., 2005):
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where qa denotes the material density of phase a, the subscript a
designating three immiscible phases: the solid (a = s), the non-
wetting fluid (a = 1; fluid 1), and the wetting fluid (a = 2; fluid 2);
ha signifies the volumetric fraction of phase a and ~ua represents
its displacement vector; R11 and R22 are the constitutive coefficients
associated with viscous coupling between the solid and fluid
phases; A12 and A21 are the constitutive coefficients pertinent to
inertial coupling between the fluid phase and the adjacent fluid
phase; A11 and A22 are those between the solid and fluid phases,
the assumption of A12 = A21 being typically made; G expresses the
shear modulus of the porous framework; and aij (i, j = 1,2,3) are
the elasticity coefficients, and their cross terms are symmetric, i.e.
aij = aji. The viscous coupling, inertial coupling, and elasticity coeffi-
cients can be determined in terms of directly-measurable parame-
ters, a detailed discussion of which was given in Lo et al. (2005).

Let us consider a two-dimensional problem of elastic wave
propagation and attenuation through two different porous elastic
half-spaces saturated by various fluid mixtures in the plane x–z.
The direction z points into the half-space and is positive down-
ward. Thus, the Helmholtz potential of the displacement vector
of solid and fluids along the directions x and z can be expressed as
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where ua and wa represent the components of the displacement
vector~ua in the directions x and z, respectively, and~ua is presumed
to be independent of y; /a and wa are two potential functions. It fol-
lows from Eqs. (2) that the dilatation and rotation of the a phase can
be written as
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where ĵ is the unit vector in the y direction. Next, taking the diver-
gence of both sides of Eqs. (1) and then substituting Eqs. (2) and
(3.1) into the result, we obtain
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