Digital Investigation 12 (2015) 41-52

journal homepage: www.elsevier.com/locate/diin

Contents lists available at ScienceDirect

Digital Investigation

A mathematical approach to NAND flash-memory

descrambling and decoding

Jan Peter van Zandwijk’

@ CrossMark

Netherlands Forensic Institute, Department of Digital Technology, Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands

ARTICLE INFO

ABSTRACT

Article history:

Received 27 November 2014

Received in revised form 12 January 2015
Accepted 15 January 2015

Available online 6 February 2015

Keywords:

NAND flash memory
LFSR-based scrambling
Berlekamp—Massey algorithm
Error-correcting code
BCH-code

New mathematical techniques for analysis of raw dumps of NAND flash memory were
developed. These techniques are aimed at detecting, by analysis of the raw NAND flash
dump only, the use of LFSR-based scrambling and the use of a binary cyclic code for error-
correction. If detected, parameter values for both LFSR and cyclic error-correcting code are
determined simultaneously. These can subsequently be applied to expose the content of
memory pages in the raw NAND flash dump and prepare these for further processing with
media analysis tools. The techniques were tested on raw NAND flash memory dumps of
four different devices and in all cases LFSR-based scrambling and binary cyclic error-
correcting codes were in use.

© 2015 Elsevier Ltd. All rights reserved.

Introduction

Over the years, NAND flash memory has become the
dominating storage medium used in consumer electronics
such as smartphones, USB-drives, solid state drives and SD
cards. NAND flash is a form of non-volatile memory that
can be electrically erased and reprogrammed. A typical
layout of a device using NAND flash memory is schemati-
cally shown in Fig. 1.

The flash storage consists of the flash memory itself and
a controller, which handles requests to read or write data
and thus provides an interface between the flash memory
and the host operating system. NAND flash memory is
organized in blocks, each consisting of a number of mem-
ory pages. Reading and writing of data to NAND flash
memory is done page wise, whilst erasing data from flash
memory can only be done block-wise. Blocks typically
contain 32-128 memory pages, which each typically consist

* Corresponding author. Netherlands Forensic Institute, Department of
Digital Technology, PO Box 24044, 2490 AA The Hague, The Netherlands.
Tel.: +31 70 8886435.

E-mail address: j.p.van.zandwijk@nfi.minvenj.nl.

http://dx.doi.org/10.1016/.diin.2015.01.003
1742-2876/© 2015 Elsevier Ltd. All rights reserved.

of 4096—8192 bytes of data. Usually, memory pages in
NAND flash are subdivided into a number of smaller data
areas, henceforth referred to as ‘data chunks’, which are
typically 1024—2048 bytes of size. Besides data chunks,
memory pages contain an area reserved for storage of
metadata for that page, generally referred to as the spare
area. Information in the spare area is available to the
controller only and cannot be accessed from the host. In
handling read and write requests, the NAND flash
controller performs several tasks aimed at ensuring data
integrity, which will be described extensively below. Be-
sides this, the controller executes a wear levelling algo-
rithm in order to spread deterioration of blocks due to
erasure evenly across the NAND flash memory, thereby
expanding flash memory lifetime. Finally, the controller
marks blocks as ‘bad’ or ‘expired’ when it has become
impossible to erase them and translates also logical block
addresses to physical block addresses, i.e. actual locations
within the NAND flash memory.

It is well known that NAND flash memory, especially the
ones containing multi-level cells (i.e. cells which hold more
than one bit of information), is inherently susceptible to bit
errors. This means that during normal operation, data


mailto:j.p.van.zandwijk@nfi.minvenj.nl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2015.01.003&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2015.01.003
http://dx.doi.org/10.1016/j.diin.2015.01.003
http://dx.doi.org/10.1016/j.diin.2015.01.003

42 J.P. van Zandwijk / Digital Investigation 12 (2015) 41-52

controller 1 block

=)

1 page

<— 1 chunk

P

data spares

NAND flash memory

Fig. 1. Typical layout of a device containing NAND flash memory. Controller handles request from the host operating system to read from and write data to the
NAND flash device. The NAND flash memory itself is divided into blocks. Each block contains a number of memory pages, each of which contains a number of data

chunks. Metadata is stored in the spare area of data chunks.

stored in NAND flash memory can get changed inadver-
tently, leading to loss of data integrity. Manufacturer of
NAND flash memories use encoding and data random-
isation techniques to deal with bit errors and hence
improve data reliability. In encoding, the controller applies
an error-correcting code (ECC) to compute parity bits for
data to be stored in NAND flash memory and stores these in
the spare area of the memory page where the data is
written. When the page is read back from the flash mem-
ory, the stored ECC parity bits are then used by the
controller to verify data integrity. If necessary, they can be
used by the controller to correct bit errors in the memory
page, a process usually referred to as decoding. Due to cell-
to-cell interference certain patterns in data can be more
prone to generating bit errors when stored in NAND flash
memory (see for example Cha and Kang, 2013). Data ran-
domisation (often referred to as data scrambing) helps
prevent this type of bit errors from occurring by reversibly
converting the data to a random looking sequence before
storage in NAND flash memory, thereby masking any
pattern in the data that may give rise to bit errors. Data can
be randomised by the controller through addition of a
pseudo-random sequence, which indeed removes any
pattern that might be present in the data. When data is
read back from the flash memory, the same pseudo-
random sequence is then subtracted again from the data
by the controller before it is presented to the host operating
system. This process will henceforth be referred to as de-
randomisation or descrambling. It is important to realise that
the purpose of data randomisation is to enhance data
reliability and not to protect data against unauthorised
access. For the latter purpose, it is customary to make use of
good cryptographic primitives.

Fig. 2 schematically shows the process of data ran-
domisation and encoding as done by the controller when
storing data in NAND flash memory. The order in which
both processes can be executed is interchangeable: the
controller can either compute parity bits first and then
randomise data, or first randomise data and then compute
parity bits for this randomised data. After these processes,
randomised data and parity bits are written to NAND flash
memory. In doing so, some slight reformatting of data

might occur. For instance, randomised data can be stored in
reversed byte order, or bits in the data might be inverted
before storage. Due to the reformatting process, rando-
mised data and parity bits as found in NAND flash memory
might not correspond directly to data coming from the
encoding and randomisation processes, as described above.
When data is read from NAND flash memory, the reverse
processes are executed by the controller: data from flash
memory is de-randomised and decoded, spares are
removed and the resulting data is presented to the host
operating system.

In a forensic investigation, data from a NAND flash de-
vice can be secured by making a high-level copy of the file
system on the device using forensic imaging tools such as
EnCase, dd or FTK Imager. In doing so, data present on the
NAND flash device is accessed through the controller. In
such a case, the processes of decoding and de-
randomisation data remain invisible because these are
dealt with by the controller. Also, the controller takes care
of presenting the content of memory pages in the right
order to the host. As an alternative to high-level data
acquisition, it is possible to acquire data from a NAND flash
device at a lower level by making a raw dump of the con-
tent of the NAND flash memory itself. This is technically
more involved than imaging the high-level file system and
can require some special expertise. An overview of tech-
niques for low-level data acquisition of NAND flash mem-
ory can be found in Breeuwsma et al. (2007). Low-level data
acquisition may be the only possibility to secure data from
a NAND flash device when it is impossible to use the
controller to access data on the device, as may be the case
when the controller is damaged or when access to the
device is protected by an unknown password. An advantage
of low-level data acquisition with respect to high-level
acquisition is that also information which is hidden by
the controller such as for example memory pages marked
as bad and spare areas of memory pages, becomes available
to investigation. Data obtained in a low-level acquisition is
unsuitable for direct further processing with media anal-
ysis tools because it contains randomisation, needs to be
decoded and memory pages need to be put in the right
order to reconstruct the high-level file system.



Download English Version:

https://daneshyari.com/en/article/457797

Download Persian Version:

https://daneshyari.com/article/457797

Daneshyari.com


https://daneshyari.com/en/article/457797
https://daneshyari.com/article/457797
https://daneshyari.com

