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s u m m a r y

Surrogate model based methodologies are developed for evolving multi-objective management strategies
for saltwater intrusion in coastal aquifers. Two different surrogate models based on genetic programming
(GP) and modular neural network (MNN) are developed and linked to a multi-objective genetic algorithm
(MOGA) to derive the optimal pumping strategies for coastal aquifer management, considering two
objectives. Trained and tested surrogate models are used to predict the salinity concentrations at differ-
ent locations resulting due to groundwater extraction. A two-stage training strategy is implemented for
training the surrogate models. Surrogate models are initially trained with input patterns selected uni-
formly from the entire search space and optimal management strategies based on the model predictions
are derived from the management model. A search space adaptation and model retraining is performed
by identifying a modified search space near the initial optimal solutions based on the relative importance
of the variables in salinity prediction. Retraining of the surrogate models is performed using input–output
samples generated in the modified search space. Performance of the methodologies using GP and MNN
based surrogate models are compared for an illustrative study area. The capability of GP to identify
the impact of input variables and the resulting parsimony of the input variables helps in developing effi-
cient surrogate models. The developed GP models have lesser uncertainty compared to MNN models as
the number of parameters used in GP is much lesser than that in MNN models. Also GP based model was
found to be better suited for optimization using adaptive search space.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Optimization of pumping from coastal aquifers is a challenging
groundwater management problem as excessive extraction of
water from aquifers hydraulically connected to the sea often re-
sults in salinity intrusion. Salinity intrusion in coastal aquifers is
a highly non-linear and complex process (Bear et al., 1999). Once
salinity intrusion occurs, it involves long-term measures incurring
huge costs to remediate these contaminated aquifers. Hence, care-
fully planned strategies of groundwater extraction are required to
prevent the eventual contamination of the valuable resource.

Salinity intrusion management models are used to prescribe
management strategies for the sustainable use of coastal aquifers
by controlling salt water intrusion. Developing an optimal manage-
ment model involves integrating a groundwater flow and transport
simulation model within an optimization framework. Flow and

transport equations for salinity intrusion are coupled together by
the density variation occurring during the mixing process, requir-
ing simultaneous solution of both the equations. The numerical
model for the density dependent flow and transport simulation
would be computationally expensive, especially when used in a
simulation–optimization framework. Trained and tested surrogate
models are capable of approximating the numerical simulation
model for simulating flow and transport process in the aquifer.
Such a surrogate model when linked to an optimal decision model
can evolve multi-objective optimal management strategies for the
aquifer with the least computational burden. The use of genetic
programming (GP) and modular neural networks (MNN) as the
surrogate models is presented in this study. Trained and tested
GP and MNN models are linked with a multi-objective genetic
algorithm to derive optimal management strategies for a coastal
aquifer.

Simulation–optimization models have been extensively used in
solving groundwater pumping management problems (Gorelick,
1983; Gorelick et al., 1984; Ahlfeld and Heidari,1994; Hallaji and
Yazicigil, 1996; Emch and Yeh, 1998; Wang and Zheng, 1998;
Das and Datta, 1999a,b; Cheng et al., 2000; Mantoglou, 2003;
Mantoglou et al., 2004; Katsifarakis and Petala, 2006; Ayvaz and
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Karahan, 2008). Sharp-interface models and variable density
models are the two modelling approaches used for simulating
salinity intrusion in coastal aquifers. A number of studies have
used sharp interface salinity intrusion models in the simulation–
optimization framework (Iribar et al., 1997; Dagan and Zeitoun,
1998; Mantoglou, 2003; Park and Aral, 2004; Mantoglou and
Papantoniou, 2008). Sharp-interface models are relatively simple
and are easier to be incorporated within optimization models.
Using a 3D density dependent model within an optimization
framework is constrained by the CPU time taken by the model.
Different techniques like response matrix method (Gorelick,
1983), embedding technique (Das and Datta, 1999a,b), and exter-
nally linking the flow and transport simulation model to the opti-
mization model (Dhar and Datta, 2009) have been used in the past
studies. In an externally linked simulation–optimization frame-
work the optimization model calls the simulation model each time
a candidate solution is evaluated. Thus the simulation model is run
thousands of times before the optimal solution are obtained, add-
ing to the computational complexity of the management model.
Dhar and Datta (2009) reported a 30-day run time, on a 2.4 GHZ
Oeptron AMD machine with 4 GB RAM, for a linked simulation–
optimization model applied to a small aquifer system to find opti-
mal solution.

Surrogate models are used to approximate the numerical simu-
lation model in order to reduce the computational burden imposed
by large scale numerical simulation models, especially within a
linked simulation–optimization framework. Different methods like
Artificial Neural Networks, radial-basis-function network, support
vector machine etc. are used for constructing surrogate models.
Extensive discussion of surrogate models can be seen in Jin (2005).

Artificial Neural Networks (ANN) have been widely used as
surrogates for groundwater models (Ranjithan et al., 1993; Rogers
et al., 1995; Aly and Peralta, 1999). Substantial research work has
been done on using Artificial Neural Networks as surrogate models
for simulation–optimization studies. Bhattacharjya (2003), Rao
et al. (2004), Bhattacharjya and Datta (2005, 2009), Kourakos and
Mantoglou (2006) and Dhar and Datta (2009) have used Neural
Network surrogate models for developing salinity intrusion man-
agement models. Arndt et al. (2005) developed a neural network
surrogate model implementing search interval adaptation. The
adaptive neural network model was used as a surrogate for a finite
element groundwater model and was used with an optimization
algorithm to solve an optimal design problem. Yan and Minsker
(2006) developed an Adaptive Neural Network Genetic Algorithm
(ANGA) where the network was trained with search interval adap-
tation and genetic algorithm used to solve the optimization model.
Behzadian et al. (2009) used adaptive neural networks in combina-
tion with multi-objective genetic algorithm NSGA-II to locate
pressure loggers for a stochastic sampling design. Kourakos and
Mantoglou (2009) developed a modular neural network (MNN)
with a number of sub-networks replacing a global ANN. Salinity
concentration in each monitoring well was predicted using a mod-
ular neural network and the intrusion is controlled by relatively
few pumping wells falling within certain control distance from
the monitoring wells. The networks were trained adaptively as
optimization progresses. The computational time could be reduced
considerably by using the modular neural networks.

A few studies in the broad area of hydrology and water re-
sources have used GP models (Dorado et al., 2002; Makkeasorn
et al., 2008; Parasuraman and Elshorbagy, 2008; Wang et al.,
2009). GP has been used to develop prediction models run-off, riv-
er stage and real-time wave forecasting. (Babovic and keijzer,
2002; Sheta and Mahmoud, 2001; Gaur and Deo, 2008). Zechman
et al. (2005) developed a GP based surrogate model for use in a
groundwater pollutant source identification problem. The chemi-
cal signals at the observation wells were used to reconstruct the

pollution loading scenario. The inverse problem was solved using
a simulation–optimization approach using GA to conduct the
search. The numerical model was replaced by a surrogate model
developed using genetic programming to reduce the computa-
tional burden.

The present study uses two surrogate models, GP and MNN,
linked with multi-objective genetic algorithm to solve the pump-
ing optimization problem. Genetic programming (GP) models are
developed as surrogates for the variable density flow and transport
simulation model, FEMWATER, which is used to simulate the salin-
ity concentration at each monitoring well location. The GP models
are then coupled with a Multi-objective Genetic Algorithm, Non-
dominated Sorted Genetic Algorithm- II (NSGA-II) (Deb, 2001) to
derive optimal pumping strategies. Modular neural network mod-
els were also developed for predicting the salinity concentrations
at these locations and linked with NSGA II to solve the same prob-
lem. Both GP and MNN models are trained with search space adap-
tation in two stages to increase the accuracy of prediction in a
search space near the entire Pareto-optimal set of solutions.

The governing equations for the simulation of variable density
flow and transport are described in Section 2. The framework of
the management model and the optimization formulation are pre-
sented in Section 3. The GP-MOGA and MNN-MOGA models are
presented in Sections 3.3 and 3.4 respectively. The methodology
of search space adaptation and retraining the surrogate models
for a multi-objective problem framework is described in Section
4. Section 5 presents the application of the developed methodolo-
gies to a small coastal aquifer and the relevant results and discus-
sions. The conclusions are presented in Section 6.

2. Density dependent flow and transport simulation model

The three dimensional density dependent flow and transport
simulation model FEMWATER (Lin et al., 1997) was chosen to sim-
ulate the coupled flow and transport process in the coastal aquifer
system. The relevant equations for the density dependent flow and
transport are as follows (Lin et al., 1997).

2.1. Flow equation
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where F is the storage coefficient, h the pressure head, t the time, K
the hydraulic conductivity tensor, z the potential head, q the source
and/or sink, q the water density at the chemical concentration C, qo

the referenced water density at zero chemical concentration, q� the
density of either the injection fluid or the withdrawn water, h
the moisture content, a0 the modified compressibility of water, n
the porosity of the medium, S is the Saturation.

The hydraulic conductivity K is given by
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l

k ¼
q
qo
l
lo

 !
qog
lo

kskr ¼
q
qo
l
lo

 !
Ksokr ð3Þ

where l is the dynamic viscosity of water at chemical concentration
C, lo the referenced dynamic viscosity of water at zero chemical
concentration, k the permeability tensor ks the relative permeabil-
ity or relative hydraulic conductivity, Kso is the referenced saturated
hydraulic conductivity tensor.

The density dependence on concentration is given by,

q
qo
¼ a1 þ a2C ð4Þ
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