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s u m m a r y

Nonlinear rain dynamics, due to strong coupling with turbulence, can be described by stochastic scale
invariant (such as multifractal) models. In this study, attention is focused on the three-parameter frac-
tionally integrated flux (FIF), based on the universal multifractal (UM) model developed by Schertzer
and Lovejoy (1987). Multifractal analysis techniques were applied to experimental radar data measured
during the African monsoon multidisciplinary analysis (AMMA) campaign, during the summer of 2006.
The non-conservation parameter H, which has often been estimated at 0, was found to be more likely
close to 0.4, meaning that rain is not a conserved cascade. Moreover, it is shown that the presence of
numerous zero values in the data has an influence, which has until now been underestimated, but should
in fact be accounted for. UM parameters are therefore estimated from the full dataset, and then only from
maps in which almost all pixels have a non-zero value. Significant differences were found, attributed to
on–off intermittency, and their role was checked by means of simulations. Finally, these results are com-
pared with those previously based on time series, and collected by a co-localized disdrometer. The sets of
parameters obtained in the spatial and time domains are found to be quite close to each other, contrary to
most results published in the literature. This generally reported incoherency is believed to result mainly
from the influence of on–off intermittency, whose effects are stronger for time series than for selected
radar maps.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

When modeling the atmosphere, one needs to take into account
various significant fields, such as wind, temperature, humidity or
rain rate, as well as their coupling interactions. Due to its highly
nonlinear and intermittent behavior, the rain rate field remains
one of the most difficult to model. Phenomenological models and
statistical tools are generally required. Rain is strongly coupled
with atmospheric turbulence, which in the inertial range can be
statistically described by scale invariant processes, due to the fun-
damental symmetries of the Navier–Stokes equations. These scale
invariant processes do not have any characteristic scale over the
scaling range. Moreover, interactions occur preferentially between
neighbouring scales (localness in Fourier space), and energy fluxes
may be conserved from large to small-scales. The latter three prop-
erties lead to a cascade phenomenology. To illustrate this, we recall
the classical Kolmogorov and Corrsin–Obukhov scaling laws
(Kolmogorov, 1941; Obukhov, 1949; Corrsin, 1951), which respec-
tively describe longitudinal velocity (v) and passive-scalar (q) field

increments (denoted Dv and Dq). These statistical laws are based
mainly on the assumption of energy flux density (e) and scalar var-
iance flux density (v) conservation, as well as on dimensional con-
siderations. Their expressions, in the case of homogeneity of the
fluxes, are respectively:

Dv � e1=3l1=3

Dq � v1=2e�1=6l1=3

where l is the scale at which increments are considered.
The case of inhomogeneous fluxes was investigated later (Kol-

mogorov, 1962; Obukhov, 1962): although they have a constant
average, scale-by-scale transfers may be intermittent. Scaling cas-
cade models were then proposed in order to represent such inter-
mittency (Novikov and Stewart, 1964; Yaglom, 1966; Mandelbrot,
1974). Turbulence (and rain) models were therefore adapted to
reproduce scale invariance properties through the use of fractal
geometry.

However, it was found that a single fractal dimension was insuf-
ficient to describe the whole phenomenon, such that more sophis-
ticated models were developed in the 1980s, based on multifractal
formalism. In these models, rain is described by an infinite set of
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fractal dimensions, each of these being associated with a singular-
ity level.

Then, it was shown by Schertzer and Lovejoy (1987) that mul-
tifractal rain properties could be reproduced by a multiplicative
cascade process. In the same paper, the authors mention the stabil-
ity properties of cascade generators, and argue the existence of a
class of attractors (called universal multifractals (UM)). Moreover,
since geophysical processes are generally non-stationary, an addi-
tional fractional integration is needed. Such integrated cascades
are referred to as fractionally integrated flux (FIF). This model is
described by only three fundamental parameters (Schertzer and
Lovejoy, 1991): a multifractality exponent a, an average sparsity
degree C1, and a non-conservation parameter H.

Various studies, based on this or similar formalisms, have
shown the pertinence of multifractal rain models: (Lovejoy et al.,
1987; Lovejoy and Schertzer, 1990; Gupta and Waymire, 1991; La-
doy et al., 1991; Tessier et al., 1993; Hubert et al., 1993; Olsson,
1995; Olsson and Niemczynowicz, 1996; Tessier et al., 1996; Mar-
san et al., 1996; de Lima, 1998; Hogan and Kew, 2005; Lovejoy and
Schertzer, 2006; Lovejoy et al., 2008). Typically, the parameters are
estimated as (a = 0.6, C1 = 0.5, H = 0) in time, and (a = 1.4, C1 = 0.15,
H = 0–0.3) in space. For a review of this topic, see Lovejoy and
Schertzer (1995) and Lilley et al. (2006). However, a recent study
(de Montera et al., 2009), which extends the findings of previous
papers (Harris et al., 1996; Schmitt et al., 1998), has shown that
the estimation method is biased due to the high number of zero
values present in the data (in the following, the fluctuation of the
cascade level is classically referred to as ‘intermittency’, whereas
the alternation between rain and no-rain periods is called on-off
intermittency). Indeed, the analysis of uninterrupted rain rate time
series has led to significantly different parameter estimations
(a = 1.7, C1 = 0.13, H = 0.53).

Following a similar approach, the purpose of the present study
is to estimate biases provoked by on–off intermittency in the spa-
tial domain, and to perform a new estimation of multifractal
parameters based on radar rain maps. In particular, in order to esti-
mate more reliable spatial parameters, we focus on rain map sub-
sections in which almost all pixels have a non-zero value (called
full-rain maps in the following). Firstly, the essential equations of
the multifractal framework and the multifractal analysis are re-
called (Sections 2 and 3). The experimental datasets are presented
in Section 4. Then, Section 5 presents the results of the multifractal
analysis performed both on classical rain maps, and on full-rain
sub-sections. The influence of the presence of zero values is veri-
fied by numerical simulations, and the differences between the
parameters are thus interpreted (Section 6). Finally, the new set
of unbiased universal parameters is compared with those proposed
by de Montera et al. (2009), and in other scientific publications
(Section 7).

2. Properties of multifractals

In this section, the fundamental properties of fractals and mul-
tifractals are recalled. In particular, we introduce the FIF model
used in the following sections.

2.1. Fractal sets and multifractal fields

The concept of fractal dimension is useful to characterize scale
invariance in the context of geometric sets (for a detailed introduc-
tion, see Falconer (2003). We define a fractal set A embedded in a
space of dimension D, and of characteristic size L. By considering A
on a scale defined by l, equivalent to a resolution of k = L/l, the
embedding space is divided into kD boxes Bk of size lD. Each box

may, or may not belong to the fractal set A, seen at a resolution k
(denoted Ak). The associated probability is:

PrðBk 2 AkÞ � k�Cf ð1Þ

where Cf = D � Df is the fractal co-dimension of A, and Df is its (box-
counting) fractal dimension (here and in the following, � indicates
an equality, within the limits of slowly varying functions).

In the case of rain, the situation is more complex than in a bin-
ary set because we are interested in modeling not only its presence
or absence, but also its intensity. Therefore, multifractal models
must be used instead of monofractal models with a single co-
dimension. In order to define a threshold independently of the
resolution, the scale invariant notion of singularity c is used. The
singularity is related to the threshold T by the relation:

T ¼ kc ð2Þ

For any singularity, a family of exceedance sets may be ob-
tained, each set being associated with a specific resolution. The
fundamental equation of the multifractal formalism is then:

Pr /k > kcð Þ � k�cðcÞ ð3Þ

where /k is the field seen at resolution k, and c(c) is the specific co-
dimension corresponding to the set defined by the singularity c.
Due to the equivalence relation between probability distributions
and statistical moments, (3) may also be written (Schertzer and
Lovejoy, 1987) as:

h/q
ki � kKðqÞ ð4Þ

where h�i is the averaging operator, q is the order of the moment,
and K(q) is the so-called moment scaling function which character-
izes the multifractal field. In the general case, K(q) is a convex func-
tion with the trivial special values K(0) = 0 and K(1) = 0. Eq. (4)
means that for any given order q, the moment depends on the res-
olution through a simple power-law. It can be shown that there is a
one-to-one correspondence between singularities and moment or-
ders, since the moment scaling function is the Legendre transform
of the co-dimension function (Parisi and Frisch, 1985). Two multi-
fractal fields with the same moment function are equivalent, in
the sense of equivalence classes, although they can be physically
very different (for more details concerning the properties of the
multifractal fields, see Schertzer et al. (2002)).

2.2. Multiplicative cascades

Multiplicative cascades, first developed in the framework of tur-
bulence theory, may be used to build multifractal fields. The main
idea is to start the cascade at larger scales and to derive the process
at smaller scales, by successively dividing pixels into sub-pixels,
and determining the value of each smaller pixel from that of the
larger ones, through multiplication by i.i.d. random variables, inde-
pendently of the scale. The simplest multifractal case is the a-mod-
el (Schertzer and Lovejoy, 1985) in which the random variable has
two possible values, defining multiplicative weights that respec-
tively correspond to an increasing or a decreasing pixel value. Usu-
ally, as for turbulence in which the energy flux is conserved by the
nonlinear terms of the Navier–Stokes equations, the mean of the
process is assumed to be conserved when the resolution changes:

8k; h/ki ¼ M ð5Þ

In the following, we assume that /k is a normalized conserva-
tive process, such that M = 1.
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