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s u m m a r y

Distributed hydrological models have the capability to incorporate spatially variable inputs, to represent
spatial heterogeneity of catchments and to generate outputs at interior locations. However calibrating a
distributed model is challenging so much so that a less powerful lumped model is often preferred. This
paper describes a method of calibrating a semi-distributed model based on regionalisation of parameters,
maintaining as far as possible their physical meaning, and applying spatial multipliers to optimise per-
formance. A semi-distributed implementation of the Probability Distributed Moisture (PDM) model is
employed using hourly data from the Upper Lee catchment, UK. Regression relationships between known
catchment descriptors (land cover, soil type, climate and topography) and parameters of the PDM are
developed using 10 gauged subcatchments and applied to give prior estimates of the parameters at smal-
ler ungauged subcatchment scales. These prior estimates are adjusted using multipliers which are spa-
tially uniform for each parameter. The analysis reveals that the semi-distributed PDM usually (but not
always) performs better than a lumped version at gauged points in the catchment, without the introduc-
tion of additional degrees of freedom into the calibration. This result applies even when the rainfall input
is assumed uniform over the catchment. However, predictions at ungauged points are poor, and the scope
for using for additional sources of information, including using more physics based model components
and the outputs of broader scale regionalisation studies, is discussed. Results also highlight the sensitivity
of the model parameter estimates to the number of gauged catchments used in the regression analysis
and to uncertainty associated with parameter equifinality.

� 2010 Elsevier B.V. All rights reserved.

Introduction

Modelling the flow response at ungauged interior points of a
catchment is one of the principal challenges in hydrological mod-
elling. Addressing this challenge through semi-distributed rain-
fall–runoff models has been facilitated by improved availability
of spatial data. However, it is well known that the parameters of
such models in general need to be calibrated in order to achieve
a useful degree of reliability, and this calibration is rarely a
straightforward task due to the large number of parameters that
need to be estimated (Carpenter and Georgakakos, 2006). In partic-
ular, as the number of model parameters increases with the degree
of spatial discretisation, distributed models can easily become
over-parameterised and subsequently ill-posed with respect to
the information content of available input–output data. Thus
uncertainty in parameter estimates becomes a problem which
should be addressed within any application (Madsen et al., 2002;
Orellana et al., 2008).

Suitable calibration strategies for semi-distributed models are
not as easily defined as strategies for lumped models. Spatial
inconsistencies can arise, for example, optimised parameter values
can vary spatially without any physical basis, due to uncertainties
associated with parameter interactions or data errors (Koren et al.,
2003). This raises doubt about the applicability of the model for
making predictions, particularly if parameter values need to be ad-
justed, for example, to represent land cover change (Hundecha and
Bardossy, 2004). Ideally, the variability across the catchment of cal-
ibrated parameter values would be consistent with the intended
physical significance of the parameters (Young, 2006; Pagano
et al., 2009). An important challenge therefore is to evaluate the
potential use of spatial data to inform the calibration process.

The objective of this study is to test the extent to which regional
relationships developed through lumped modelling, using
observed data from a relatively small number of sites within the
region of interest, can provide useful information for this spatial
disaggregation problem. The practical motivation is to maintain
spatial consistency of parameter estimates to inform the estima-
tion of flows at ungauged interior points in a catchment and hence,
for example, the effect of local-scale land cover changes.
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The paper is organised as follows. Section 2 gives a review of
calibration strategies for distributed rainfall–runoff models. Sec-
tion 3, the study area and data are introduced. Section 4 describes
the rainfall–runoff model and the regionalisation or downscaling
methodology. In Section 5, the results are presented, including sen-
sitivity and uncertainty analyses. Finally Section 6, states the
conclusions.

Calibration strategies for distributed hydrological models

Until recently, there have been few formalised parameter esti-
mation schemes for distributed models, mainly because of the lack
of distributed observations of rainfall and runoff and the time that
the calibration process requires (Khakbaz et al., in press). The
importance of considering multiple flow gauges during the calibra-
tion of a semi-distributed model was highlighted by various
authors, for example, Andersen et al. (2001) and Wooldridge
et al. (2001), who showed that using information from only the
catchment outlet gauge exposed significant shortcomings in
parameter estimation for some of the upstream tributaries. The
general expectations of distributed models, however, are that they
should provide information about responses within gauged catch-
ments. For example, applications may require estimates of flow or
soil moisture at interior ungauged locations, and/or may require
spatially distinct parameters to be used for the purpose of explor-
ing localised catchment management effects. Therefore, the mod-
elling may require more spatial information about parameters to
be included than can be identified using traditional calibration ap-
proaches. Some calibration approaches aim to extract additional
spatial information from a single flow gauge by explicitly consider-
ing the origins of the streamflow signals (e.g., Wagener et al.,
2009), by using chemical tracers (e.g., McGuire and McDonnell,
2006), or by using distributed data about state variables (Koren
et al., 2008). Where such information exists, such approaches seem
promising.

A more widely applied method of maximising the spatial infor-
mation, to supplement that in the gauged rainfall–runoff data, is
using prior knowledge about the distribution of catchment physi-
cal properties. There are two main associated methodological
questions: how to turn this prior knowledge into estimates of
model parameters; and how to then refine the estimates using
whatever gauged data exist. The first question has received much
attention from hydrological modellers, and it may be said that
three types of method are used. Firstly, models may be parameter-
ised such that some of the parameters have direct physical mean-
ing, so that measurements (for example, of slopes and soil depths)
may be used directly to estimate the associated parameter values.
Secondly, the prior values of model parameters may be linked to
catchment physical properties through experience of using the
model, but without any well-defined objective basis. Thirdly, and
of principal interest here, is parameter regionalisation, where
parameter estimates for an ungauged catchment are objectively
derived using information about streamflow responses at gauged
locations in one or more physically comparable catchments.

The regionalisation method has particular practical appeal for
conceptual rainfall–runoff modelling: although physical properties
cannot be used directly to estimate the parameters of conceptual
rainfall–runoff models, often there are strong associations between
the two sets of variables which act as a basis for regionalisation
(Merz and Bloschl, 2004; Young, 2006). There are alternative ap-
proaches to regionalisation, ranging from direct transfer of param-
eter sets between groups of similar catchments or hydrological
response units (Perrin et al., 2008; Reichl et al., 2009) to the use
of sophisticated relationships between parameters and physical
catchment descriptors for example, based on neural networks

(reviews are included in Vogel (2005) and Bardossy (2007)). The
most common approach is the use of regression relationships to
explicitly link model parameters to physical catchment descriptors
(Kling and Gupta, 2009). This has the practical attraction of being
simple, and many published relationships or their outputs are
widely used (e.g., Boorman et al., 1995; FEH, 1999). There are var-
ious fundamental limitations, such as model structural and data er-
rors (Wagener and Wheater, 2006), lack of power in objective
functions (Gupta et al., 1998), spatial deficits (Kling and Gupta,
2009), lack of identifiability of calibrated parameters (Beven,
2001), potentially leading to large uncertainty in parameter
estimates.

Regionalisation has commonly been used to estimate the prior
spatial distribution of parameter values. For example, Bulygina
et al. (2009) used a regression-based regional model to estimate
base flow index as a function of soil type, and conditioned each
100 � 100 m2 element of a distributed rainfall–runoff model on
this index; however they noted that additional information would
be needed to achieve the sought accuracy. Koren et al. (2003)
established regional equations by calibrating the Sacramento mod-
el parameters to soil properties from 18 catchments in the Ohio
River Basin, finding that the regionalisation could maintain the
spatial and physical consistency of parameter estimates but that
the regionalised models could not perform as well as the calibrated
lumped models. Moreda et al. (2006) used 67 subcatchments of the
Susquehanna River Basin with areas ranging from 66 to 3848 km2

to derive regression relationships between 11 physical catchment
properties and 10 model parameters. This information was applied
to estimate parameters for distributed 4 � 4 km2 grid scale models.
Results were promising with the distributed model performing
slightly better than the lumped model in most cases.

Given prior parameter estimates, if calibration data exist they
should be used to further condition the model. For most distrib-
uted models the potentially large number of parameters means
that attempting to optimise all parameters together, as tradition-
ally done for a simple lumped model, is unlikely to be useful be-
cause of the large dimensionality of the optimisation space.
Instead, some sequential method may be used, where a relatively
small number of parameters are optimised while the others are
fixed at prior estimates or previously optimised values. Ajami
et al. (2004) followed this approach to calibrate the Sacramento
model to flow at the outlet of the 1645 km2 Illinois River basin.
The results showed that although the method could in principle
represent the catchment heterogeneity, the spatial consistency of
the prior parameter values was lost due to the optimisation, and
the improvement in model performance compared to using spa-
tially uniform parameter values did not clearly justify the distrib-
uted model. To maintain the prior spatial distribution of model
parameters, while improving performance, a common approach
is to optimise spatial multipliers which move the absolute or rela-
tive value of each parameter up or down uniformly over the catch-
ment (e.g., Bandaragoda et al., 2004; Yatheendradas et al., 2008;
Pokhrel and Gupta, 2010). Irrespective of the number of spatial ele-
ments in the model, the number of variables to optimise is there-
fore equal to the number of parameters in an individual spatial
element, making the calibration both numerically tractable and
procedurally straightforward. However the accuracy of the esti-
mated spatial distribution of prior parameters may become the pri-
mary control on model performance (e.g., Michaud and Sorooshian,
1994).

In the UK there has been significant research into regionalisa-
tion, in particular the estimation of parameters of conceptual mod-
els using regression models. National scale studies using spatially
lumped models include Sefton and Howarth (1998), Lee et al.
(2005), McIntyre et al. (2005), Young (2006), Wagener et al.
(2004) and Lamb et al. (2000). However, there has been much less
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