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s u m m a r y

An important tool in the management of floods is the use of rainfall–runoff models to predict the arrival
of discharge peaks. These models generally use rainfall and potential evapotranspiration rates as input,
and relate these to the catchment discharge through a number of conceptual equations. The parameters
of these equations are estimated through a comparison of the modeled discharge to the observations.
Only one variable, catchment discharge, is thus generally used to calibrate and validate these models.
The objective of this paper is to validate the internal model dynamics of two widely used rainfall–runoff
models using baseflow estimates. The baseflow time series used in this paper are obtained through the
use of a physically-based digital baseflow filter. These models, the Hydrologiska Byråns Vattenbalansav-
delning (HBV) model and the Probability Distributed Model (PDM), were calibrated using 1 year of hourly
discharge data. The HBV model uses a linear reservoir for the modeling of groundwater flow, while the
PDM uses a cubic reservoir for this purpose. In order to assess the impact of the type of reservoir choice,
the cubic reservoir in the PDM was also replaced by a linear reservoir. Two different parameter estima-
tion algorithms were used for model calibration. The Shuffled Complex Evolution (SCE-UA) algorithm
minimizes the Root Mean Square Error between the model simulations and the observations, while Mul-
tistart Weight-Adaptive Recursive Parameter Estimation (MWARPE) uses the Extended Kalman Filter
equations in an iterative, Monte-Carlo framework. MWARPE was found to lead to the best discharge sim-
ulations, but the differences with the results obtained from the SCE-UA algorithm were relatively small.
When only the modeled discharge was analyzed, no clear picture emerged of which model produced the
best results. However, it has been found that the replacement of the cubic groundwater reservoir in the
PDM by a linear reservoir resulted in a strongly improved model performance with respect to the base-
flow. Further, MWARPE consistently led to the best baseflow estimates for the three models, while the
HBV model resulted in the best simulations of the baseflow, regardless of the calibration algorithm.
The overall conclusion of this paper is that, even though it may be difficult to assess which model and
calibration algorithm resulted in the best discharge estimates, the MWARPE calibration algorithm and
the HBV model consistently led to the best internal model dynamics.

� 2009 Elsevier B.V. All rights reserved.

Introduction

Floods are among the most common natural disasters in the
world. For example, in the Northern part of Belgium, eight floods
causing severe economic loss occurred during the last 15 years.
Among other infrastructure protecting measures, one indispens-
able tool to manage floods is the use of hydrologic models to pre-
dict the arrival of discharge peaks. Examples of such models are the
Hydrologiska Byråns Vattenbalansavdelning (HBV) model (Lins-
tröm et al., 1997) and the Probability Distributed Model (PDM)
(Moore, 2007).

These operational flood forecast models schematize a catch-
ment as a number of reservoirs (for example a subsurface reservoir
and a groundwater reservoir), which are connected through a
number of flows. The equations for these flows are determined
empirically, meaning that they have no real physical basis. The
parameters for these equations are then estimated through a com-
parison of the modeled discharge rates to observations, and a tun-
ing of the parameters until a good fit has been obtained. A large
number of methods have been developed for this purpose, for
example the parameter estimation (PEST) method (Doherty,
2001), the Shuffled Complex Evolution (SCE-UA) algorithm (Duan
et al., 1994; Yapo et al., 1998; Vrugt et al., 2003a,b), genetic algo-
rithms (Reed et al., 2000, 2003), the Multiple Start Simplex
(MSX) and local Simplex methods (Gan and Biftu, 1996), and sim-
ulated annealing (Thyer et al., 1999). In the application of these
methods for operational rainfall–runoff modeling, a number of
problems arise.
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One problem frequently encountered with these algorithms is
that, since high flows occur relatively rarely, low flows will have
an excessive weight in the parameter estimation, which will lead
to model parameters that will result in a good model performance
under low flow conditions, but not under high flow. A possible
solution to this problem is to use two different simulations (one
calibrated for high and the other calibrated for low flows), and to
weigh these simulations using a seasonal index (Oudin et al.,
2006). Another possible solution is the use of the Extended Kalman
Filter equations in an iterative, Monte-Carlo framework (Multistart
Weight-Adaptive Recursive Parameter Estimation or MWARPE)
(Pauwels, 2008). A third possible solution is to calculate multiple
objective functions, and to choose among the parameter combina-
tions on the Pareto-front (Yapo et al., 1998; Madsen, 2000; Madsen
et al., 2002; Vrugt et al., 2003a; Ajami et al., 2004; Vrugt and Rob-
inson, 2007). Further, as noted by Vrugt et al. (2005), the above
listed approaches assume that the mismatch between the observa-
tions and model simulations is due explicitly to errors in the model
parameters, and disregard the effect of uncertainty in the forcing
data, the model structure, the parameters, and the observations.
Methodologies to take into account these other sources of error
are Bayesian recursive parameter estimation (Thiemann et al.,
2001; Kaheil et al., 2006), the combination of global optimization
and data assimilation (Vrugt et al., 2005), the Integrated Bayesian
Uncertainty Estimator (IBUNE) methodology (Ajami et al., 2007),
and the use of the MWARPE method (Pauwels, 2008).

A second problem is that operational flood forecast models are
usually calibrated and validated using only observed discharge
rates, while internally they calculate a number of additional states
and fluxes. More than a decade ago, Beven and Binley (1992) al-
ready showed that identical model results can be obtained using
widely varying parameter combinations. This means that similar
discharge rates can be modeled with very different combinations
of for example baseflow and surface runoff. Although calibration
and validation of rainfall–runoff models using streamflow records
has been performed for decades, very few attempts have been
made to use baseflow estimates for this purpose. Recently, Rouhani
et al. (2007) used graphically obtained baseflow estimates to cali-
brate and validate the Soil Water Assessment Tool (SWAT). How-
ever, since a number of physically-based digital baseflow
separation algorithms have been developed (Furey and Gupta,
2001, 2003; Huyck et al., 2005), the possibility exists to use contin-
uous estimates of baseflow for the calibration and validation of
rainfall–runoff models.

The objective of this paper is to validate two well known rain-
fall–runoff models, which are calibrated using discharge time ser-
ies, using baseflow estimates obtained from a physically-based
digital baseflow filter. In other words, the problem analyzed is
which type of model leads to the most realistic internal model
dynamics, if the model is calibrated in the traditional way, mean-
ing that only discharge records were used for model parameter
estimation. Since operational flood forecasting is usually per-
formed using conceptual rainfall–runoff models, two different
models of this type are used for this purpose. The first model, the
HBV model, assumes a linear relationship between the saturated
zone storage and the baseflow (Linström et al., 1997). A second
model, the PDM, assumes a cubic relationship, meaning that the
baseflow is proportional to the third power of the saturated zone
storage (Moore, 2007). However, Fenicia et al. (2006) demon-
strated that the groundwater reservoir is best modeled in a linear
manner. For this reason, the PDM is also calibrated and validated
using a linear reservoir formulation for the baseflow. In order to
generalize the results, the parameters of the models are estimated
using two different algorithms, more specifically the SCE-UA algo-
rithm and MWARPE. The SCE-UA algorithm calculates the Root
Mean Square Error between the modeled and observed discharge,

and searches for parameter values that minimize this RMSE.
MWARPE uses the Extended Kalman Filter equations in an itera-
tive, Monte-Carlo framework in order to search for the optimal
parameter values. In other words, no RMSE is ever calculated. Be-
cause of its theoretical foundation, it has been shown that this
method is much less prone to the above mentioned problems
(too much weight given to low flows and errors in the internal
model dynamics) than traditional RMSE minimizing methods
(Pauwels, 2008). Using the calibrated model parameters, the mod-
eled baseflow rates are then compared to estimates of the catch-
ment baseflow, obtained using a physically-based digital
baseflow filter (Huyck et al., 2005). It is assessed which type of res-
ervoir choice, model formulation, and calibration algorithm leads
to the best estimate of the catchment baseflow, and consequently
to the best internal model dynamics.

Site and data description

The study was performed in a subcatchment of the Dender
catchment in Belgium, more specifically the Bellebeek catchment.
The elevation ranges between 10 and 110 m. Soil texture is pre-
dominantly loam (75%), and the land use is predominantly agricul-
ture (63%) and pasture (22%). The surface area of the catchment is
87.36 km2. Fig. 1 shows the location of the catchment together
with a Digital Elevation Model (DEM) of the area.

Discharge observations were continuously available at the out-
let of the catchment. Precipitation rates as well as the required
meteorologic data to calculate potential evapotranspiration rates
according to the method of Hargreaves, were continuously mea-
sured at the meteorologic station of Liedekerke, situated near the
outlet of the catchment. The Hargreaves equation, as explained in
Shuttleworth (1992), can be written as:

E ¼ 9:5833� 10�5S0
�dTðTa þ 17:8Þ ð1Þ

E is the potential evapotranspiration (mm h �1), S0 the water equiv-
alent of extraterrestrial radiation (mm h�1), Ta is the air tempera-
ture (C), and �dT is the difference between the mean monthly
maximum and minimum air temperatures (C). At the meteorologi-
cal station of Liedekerke, net radiation was measured instead of so-
lar radiation. For this reason, a regression was made between the
solar and net radiation measured at a meteorological station in Goo-
ik (approximately 2 km to the South of the catchment, for which
data were available for approximately 1 year, with many data gaps).
This regression yielded a value of 0.91 for the R2, and was thus used
to convert the net radiation into solar radiation. Both the discharge
observations and the meteorologic data were available at a 15 min
interval and were aggregated to an hourly time step.

Currently, the catchment is being used for operational flood
forecasting. However, these studies all focus on matching total dis-
charge observations. More detailed studies of water flows in the
catchment have not yet been performed. For this reason, the ap-
proach using alternative validation methods developed in this pa-
per is an attractive tool for model improvement.

Meteorological observations from August 1, 2006, through April
30, 2008, were used in this study. In order to analyze the meteoro-
logical conditions during the study period, the observations of the
precipitation were compared to the statistics of 105 years of pre-
cipitation from the meteorological station in Uccle, situated close
to Brussels (De Jongh et al., 2006). This 105 year data set indicates
that the average precipitation in the area is 780 mm per year. For
the year 2007, the only complete year in the study period, the total
precipitation was 847 mm, which is relatively close to the mean.
However, Table 1 lists the monthly total precipitation throughout
the study period, combined with the 105 year averages. Table 1
clearly shows that, even though the annual total precipitation is
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