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s u m m a r y

When contouring scalar potentials from point observations the process can often benefit from including
the known effects of boundary curves with specified potential or gradient. Here we consider the hydraulic
head in an aquifer and both no-flow and constant-head boundary conditions. We present a new approach
to enforcing that equipotential contours be normal to no-flow boundaries. A constant-head boundary,
with unknown head, can be included through the same process by rotating the boundary vector by
90�. Collocated observations of heads and boundaries can specify a constant-head boundary of known
value. We estimate head given both head and boundary condition observations, cokriging with both
types of information. Our new approach uses gradient vectors in contrast with previous approximate
finite-difference methods that include boundary conditions in kriging. Either the approach given here
or the finite-difference method must be implemented with smooth covariance models, e.g., Gaussian,
generalized Cauchy, and Matérn.

� 2010 Elsevier B.V. All rights reserved.

Introduction

Kriging can be used to estimate hydraulic head between obser-
vation wells (e.g., on a grid) for the construction of 2D equipoten-
tial contour maps (Kitanidis, 1997). Although kriging is the best
linear unbiased estimator, it does not include geologic or physical
knowledge of the system (beyond structure embodied in the vari-
ogram), that a practitioner would likely use when contouring the
same potentials by hand. We illustrate a method to include bound-
ary condition information in the kriging of 2D potentials. These
boundary conditions may include no-flow conditions along faults
or hydrologic contacts, or constant head conditions.

Cokriging is the multi-variable extension to kriging, and was
developed in mining to address the common problem of estimating
an under-sampled variable (e.g., Chilés and Delfiner, 1999, Chapter
5). Often an allied variable is estimated more frequently than the
variable of interest, and the correlation between the two is used
to improve the quality of the final estimate (e.g., Chilés and Delfin-
er, 1999; Goovaerts, 1997; Isaaks and Srivastava, 1989; Kitanidis,
1997). Frequently the information contained in a second variable
can be used to enhance estimates of the primary variable. The esti-
mation of cross-covariance functions, which describe the spatial

correlation between variables at different locations, is a hindrance
to more widespread use of cokriging (Isaaks and Srivastava, 1989).
Unless the dataset is exhaustive, cross-covariance models esti-
mated solely from data are questionable.

Our approach derives the required cross-covariance functions
from the mathematical relationship followed by a potential and
its gradient. The benefits are twofold; first, only the direct covari-
ance (or equivalent variogram) function need be estimated (as is
done for single-variable kriging) and secondly, the cokriging now
honors a portion of the underlying physical process (i.e., the spatial
relationship between the potential and its gradient), which single-
variable kriging cannot.

Pardo Igúzquiza and Chica Olmo (2004) and Brochu and Mar-
cotte (2003) discuss covariance models which can be used to rep-
resent a function known to be second-order continuous, i.e., a
potential governed by a second-order differential equation. The
covariance model must be continuous at the origin (zero lag); most
common covariance models do not satisfy this requirement (e.g.,
exponential and spherical), we will discuss three that do.

Chilés and Delfiner (1999, p. 319) introduced a finite-difference
approximation to no-flow boundary condition information when
kriging hydraulic heads, referring to an unpublished presentation
by Delhomme from 1979. More recently Brochu and Marcotte
(2003) give a finite-difference example in terms of a dual kriging
formulation. We develop the cokriging equations using the true
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gradients of head and the cross-covariance models required from
the covariance function used for heads. We compare and contrast
this with the finite-difference approach.

True derivative approach

Cokriging is used to include boundary condition information
when kriging potentials. Pardo Igúzquiza and Chica Olmo (2004,
2007) extended the related procedure of estimating the gradients
using head data alone (Philip and Kitanidis, 1989), deriving the
covariance and cross-covariance functions analytically from the
Gaussian covariance which models the variability of head. The cok-
riging linear estimator, Z�, is

Z� x0ð Þ ¼
XN

a¼1

kaZðxaÞ þ
XM

b¼1

db½v̂ðxbÞ � rZðxbÞ�; ð1Þ

where ZðxaÞ is the potential observed at xa (x a 2D Cartesian coor-
dinate), x0 is the location where the potential is to be estimated, ka

and db are cokriging weights, a and b are dummy variables, N and M
are the number of head and boundary observations respectively,
and v̂ðxbÞ is a unit vector normal to the no-flow boundary (or tan-
gent to a constant-head boundary), see Fig. 1. Using the shorthand
notation ZðxaÞ ¼ Za, we denote the directional derivative of Za, in
the direction v̂ , as ðv̂ � rZÞa ¼ Zv̂

a .

Kriging with a trend

The universal kriging drift is assumed to be polynomial in form,
specified as

E½Z0� ¼ mðx0Þ ¼
XL

‘¼0

c‘f
‘
0 ; ð2Þ

where E is the expectation operator, mðx0Þ is the mean (a smooth
function), c‘ are free coefficients, L is the order of the polynomial
approximation, and the monomial basis functions are
f 0 ¼ 1; f 1 ¼ x; f 2 ¼ y; f 3 ¼ x2; f 4 ¼ y2; f 5 ¼ xy, etc. For L ¼ 0, the
universal kriging system simplifies to that of ordinary kriging (con-
stant unknown mean). L ¼ 2 corresponds to a linear trend, while
L ¼ 5 corresponds to a quadratic trend. Brochu and Marcotte
(2003) indicate how other types of drift basis functions (e.g., the
Thiem steady-state well solution) can be used in the contouring
of hydraulic heads in special circumstances where additional infor-
mation is known about the flow system.

Unbiasedness condition

The kriging weights ka and da are sought to minimize the vari-
ance, while producing an unbiased solution. The unbiasedness con-
dition is

E Z�0 � Z0
� �

¼ 0 ð3Þ

where Z0 is the unknown true value at the desired estimation loca-
tion. This can be expanded using (1) and (2) as

E½Z0� ¼
X

a
kaE½Za� þ

X
b

dbE Zv̂
b

h i
X
‘

c‘f
‘
0 ¼

X
‘

c‘
X

a
kaf ‘a þ

X
‘

c‘
X

b

dbðv̂ � rf ‘Þb

f ‘0 ¼
X

a
kaf ‘a þ

X
b

dbðf ‘Þv̂b ‘ ¼ 0; . . . ; L

ð4Þ

where the v̂ component of the gradient of the ‘th monomial drift
term, ðf ‘Þv̂b , at location xb, can be computed explicitly. These gradi-
ents are rf ‘b ¼ 0; ı̂; |̂; 2x̂ı; 2y|̂; ŷıþ x|̂, for ‘ ¼ 0; . . . ;5, where ı̂

and |̂ are the Cartesian unit vectors. These gradient vectors are pro-
jected onto v̂ . To ensure the expected value of the prediction is
equal to the mean, mðxÞ, we enforce (4) while minimizing the esti-
mation variance.

Estimation variance

The variance of the estimation error R due to the linear estima-
tor is

Var½R� ¼ Ef Z�0 � Z0
� �2g ð5Þ

Following a procedure akin to that used to derive the standard
kriging and cokriging equations (e.g., Goovaerts, 1997; Isaaks and
Srivastava, 1989; Kitanidis, 1997), we substitute (1) and expand
(5) as

Var½R� ¼ kakbE½ZaZb� þ dadbE Zv̂
aZv̂

b

h i
þ E½Z0Z0� þ 2kadbE ZaZv̂

b

h i
� 2kaE½ZaZ0� � 2daE Z0Zv̂

a

h i
ð6Þ

For brevity, Einstein summation convention is used; pairs of
dummy subscripts within a product imply summation. The ex-
pected value of the product of random variables is their covariance,
CðhÞ; here it is assumed the covariance is isotropic and only a func-
tion of the distance or lag h between the two points. For example,
E½ZaZb� ¼ CðhabÞ ¼ rab, where rab is element ða; bÞ from the covari-
ance matrix.

Parzen (1962, Section 3.3) illustrates how the expected value of
the derivative of a stochastic process is the derivative of the ex-
pected value; the order of the E and r operators can be switched,
by assuming mðxÞ is differentiable and the second derivative of the
covariance exists. Doing so yields

Var½R� ¼ kakbrab þ dadbrv̂û
ab þ r2

00 þ 2kadbrv̂
ab � 2kara0

� 2darû
0a ð7Þ

where rv̂
ab and rv̂û

ab are the first and second directional derivatives of
the covariance, respectively.

An objective function, Q, which incorporates both the minimiza-
tion of the variance (7) and the unbiasedness condition (4), can be
defined as (Chilés and Delfiner, 1999, p. 167)

Q ¼ Var½R� þ 2l‘ kaf ‘a þ dbðf ‘Þv̂b � f ‘0
h i

ð8Þ

where l‘ : ‘ ¼ 0; . . . ; L are Lagrange multipliers.

Minimize variance of residual

To minimize Q, we take derivatives of (8) with respect to each
weight and Lagrange multiplier (e.g., Chilés and Delfiner, 1999,
Section 3.3.1)

Fig. 1. No-flow (a) and constant head (b) boundary conditions, represented with
boundary vectors (tail at point of application). Arrows offset from boundary for
clarity.
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