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s u m m a r y

Quantification of uncertainty of hydrological models has attracted much attention in hydrologic research
in recent years. Many methods for quantification of uncertainty have been reported in the literature, of
which GLUE and formal Bayesian method are the two most popular methods. There have been many dis-
cussions in the literature concerning differences between these two methods in theory (mathematics)
and results, and this paper focuses on the computational efficiency and differences in their results, but
not on philosophies and mathematical rigor that both methods rely on. By assessing parameter and mod-
eling uncertainty of a simple conceptual water balance model (WASMOD) with the use of GLUE and for-
mal Bayesian method, the paper evaluates differences in the results of the two methods and discusses the
reasons for these differences. The main findings of the study are that: (1) the parameter posterior distri-
butions generated by the Bayesian method are slightly less scattered than those by the GLUE method; (2)
using a higher threshold value (>0.8) GLUE results in very similar estimates of parameter and model
uncertainty as does the Bayesian method; and (3) GLUE is sensitive to the threshold value used to select
behavioral parameter sets and lower threshold values resulting in a wider uncertainty interval of the pos-
terior distribution of parameters, and a wider confidence interval of model uncertainty. More study is
needed to generalize the findings of the present study.

� 2010 Elsevier B.V. All rights reserved.

Introduction

Conceptual hydrological models are popular tools for simulat-
ing the land phase of the hydrological cycle. They are frequently
used for water balance analysis, extending and infilling streamflow
records, flow forecasting, reservoir operation, water supply, and
watershed management. One distinguishing characteristic of a
conceptual model is that one or more of its parameters requires
calibration using physically observable catchment responses
(Kuczera and Parent, 1998). When parameter calibration is em-
ployed, it is easy to show that multiple calibration periods yield
multiple optimum parameter sets, and even in a single period, dif-
ferent sets of optimum parameter values may yield similar model
performances; this is termed as ‘‘equifinality” in the literature. On
the other hand, for the same input and output data, different mod-
els, with similar calibration results, may produce largely different
predictions, as observed by Jiang et al. (2007) in a comparison of
hydrological impacts of climate change simulated by six hydrolog-

ical models. Since a conceptual model can be viewed as an empir-
ical combination of mathematical operators describing the main
features of an idealized hydrologic cycle, one cannot rely on a un-
iquely determined model parameter set or model prediction (Kucz-
era and Parent, 1998). Consequently, attention should be paid to
the uncertainties in hydrological modeling.

Generally speaking, there are three principal sources contribut-
ing to modeling uncertainty: errors associated with input data and
data for calibration, imperfection in model structure, and uncer-
tainty in model parameters (e.g., Refsgaard and Storm, 1996). Xu
et al. (2006) demonstrated that the quality of precipitation data
influences both simulation errors and calibrated model parame-
ters. Engeland et al. (2005) showed that the effect of the model
structural uncertainty on the total simulation uncertainty of a con-
ceptual water balance model was larger than parameter uncer-
tainty. Marshall et al. (2007) stated that the uncertainty in model
structure requires developing alternatives, where outputs from
multiple models are pooled together in order to generate an
ensemble of hydrographs that are able to represent uncertainty.
Kavetski et al. (2002), and Chowdhury and Sharma (2007) investi-
gated input data uncertainty by artificially adding noise to input
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data and then formulating an empirical relationship between this
noise and parameter error. Many other examples of the methods
dealing with model and data uncertainty are available in the
hydrological literature (e.g., Georgakakos et al., 2004; Carpenter
and Georgakakos, 2004; Kavetski et al., 2006a,b).

A variety of methods have been developed to deal with param-
eter uncertainty and modeling uncertainty, i.e., to provide poster-
ior distributions for parameters and runoff, which are of greater
interest. Among these methods, the generalized likelihood uncer-
tainty estimation (GLUE) method, developed by Beven and Binley
(1992), and the formal Bayesian method using Metropolis–Has-
tings (MH) algorithm, a Markov Chain Monte Carlo (MCMC) meth-
odology, are extensively used (Freer et al., 1996; Beven and Freer,
2001; Kuczera and Parent, 1998; Bates and Campbell, 2001).
According to Beven et al. (2000), GLUE ‘‘represents an extension
of Bayesian or fuzzy averaging procedures to less formal likelihood
or fuzzy measures.” The concept of ‘‘the less formal likelihood”,
which represents the main element of differentiation with the
Bayesian inference, is a remarkable aspect of the GLUE methodol-
ogy. The flexible definition of the likelihood function allows for
no strong assumptions on the error model. Doubtless, when the
assumptions are fulfilled, the formal Bayesian method is the most
convenient to use, since ‘‘the formal Bayesian approach has its
roots within classical statistical theory and applies formal mathe-
matics and MCMC simulation to infer parameter and prediction
distributions” (Vrugt et al., 2008). At the same time, variants of
these methods have also been developed. These include utilizing
a new procedure to partially correct the prediction limit of a hydro-
logical model in GLUE (Xiong and O’Connor, 2008), introducing
adaptation into the MCMC method (Kuczera and Parent, 1998;
Gilks et al., 1998; Yang et al., 2007, 2008), merging one of MCMC
sampler with the SCE-UA global optimization algorithm (Vrugt
et al., 2003), and revising GLUE based on the MCMC sampling
(Blasone et al., 2008a,b), amongst others.

Compared to other methods, GLUE is easy to implement, requir-
ing no modifications to existing source codes of simulation models.
Therefore, many users are attracted by GLUE. On the other hand,
controversy over GLUE has recently started to increase ‘‘for not
being formally Bayesian, requiring subjective decisions on the like-
lihood function and cutoff threshold separating behavioral from
non-behavioral models, and for not implementing a statistically
consistent error model” (Blasone et al., 2008b). In the same work,
Blasone et al. (2008b) pointed out that ‘‘. . . the GLUE derived
parameter distribution and uncertainty bounds are entirely subjec-
tive and have no clear statistical meaning.” Stedinger et al. (2008)
argued that although an absolutely correct likelihood function may
be difficult to construct, it should not be an excuse to use any func-
tion and calls for a likelihood measure that will yield probabilities
with any statistical validity. Liu et al. (2005) and Todini (2008)
showed that a formal likelihood measure can be derived by first
converting a real data set into a normal space.

Another drawback of GLUE is that it is computationally ineffi-
cient and can even lead to misleading results, unless a large sample
is drawn (Blasone et al., 2008a). Mantovan and Todini (2006)
showed the incoherence of GLUE with Bayesian inference using
an experiment, where synthetic input and output and a correct for-
mal likelihood function were applied, and they referred it to as
pseudo-Bayes. They proved that the ‘‘less formal likelihoods” failed
to guarantee the requirements of Bayesian inference process that
adding more data did not necessarily add information to the con-
ditioning process, and the equivalence of experimental value irre-
spective of the order. Subsequently, Beven et al. (2007) responded
that GLUE was not developed to deal with cases for which every
observation added information to the conditioning process. It
was developed to deal with real calibration problems in which
both inputs and model structural errors played an important role.

They further showed that if a correct formal likelihood was used as
a prior in GLUE, the results obtained would be identical with the
formal Bayes. Stedinger et al. (2008) showed that using a correct
likelihood function GLUE can lead to meaningful uncertainty and
prediction intervals. Blasone et al. (2008b) also stated that the
computational efficiency of GLUE is improved by sampling the
prior parameter space using an adaptive MCMC scheme.

It can be noted here that in many cases it is not easy to compare
the original GLUE method and the formal Bayesian method di-
rectly. First, the formal Bayesian approaches attempt to disentan-
gle the effect of input, output, parameter and model structural
error which, on one hand, are important to improve our hydrologic
theory of how water flows through watersheds; on the other hand
these attempts make statistical inference difficult (Vrugt et al.,
2008). GLUE does not attempt to separate these effects on the total
uncertainty which, on one hand, makes it easy to use and under-
stand, but on the other hand it is impossible to pinpoint what ele-
ments of the model constitute most uncertainty. Second, in
practice the formal Bayesian method is often used to calculate
the uncertainty interval of one-step ahead forecasting with a for-
mal or exact likelihood function that is assumed or transformed
from a more general and unknown form, while the GLUE method
is often used to calculate the uncertainty interval of streamflow
simulation with a statistically informal likelihood function. In this
study, both methods are applied on the same grounds, i.e., our fo-
cus is on the computational efficiency and differences in the results
of parameter and model uncertainty calculated by the two meth-
ods, and not on the different philosophies and mathematical rigor
that both methods rely on. Additional analyses are performed to
test how sensitive the GLUE results are to the threshold values of
retained solutions.

The specific objectives of this paper are: (1) to assess parameter
uncertainty of a conceptual hydrological water balance model
WASMOD (Xu, 2002) using GLUE and Bayesian method, and (2)
to examine the differences in the results of these two methods
and discuss the reasons for the differences.

The organization of this paper is as follows. After this brief
introduction, two methods are presented, followed by a discussion
of the WASMOD model, study area and data used. Then, parameter
and modeling uncertainty of the two methods are compared and
discussed, and the results and conclusions are presented.

Methods

Formal Bayesian approach

Consider a random variable Y whose value is denoted by y and a
parameter vector h. P(h) is a prior distribution of h based on histor-
ical data or expert knowledge, and L(Y/h) is the likelihood function
based on data collected by observations. The Bayesian theorem
provides a formal mechanism for deriving the posterior distribu-
tion, P(h/Y), of h based on the prior distribution and likelihood dis-
tribution as:

Pðh=YÞ ¼ LðY=hÞPðhÞR
LðY=hÞPðhÞdh

/ LðY=hÞPðhÞ ð1Þ

Based on the investigation by Xu (2001) on the statistical prop-
erties of the simulation error for the WASMOD model, a square-
root transformation is applied:ffiffiffiffiffiffiffiffiffiffiffi

Qobs;t

q
¼

ffiffiffiffiffiffiffiffiffiffiffi
Q sim;t

q
þ et ð2Þ

where Qobs,t is the observed streamflow at time t, Qsim,t is the simu-
lated streamflow at time t, and et is the residual term. It is assumed
that this residual term is mutually independent and approximately
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