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s u m m a r y

Choosing an appropriate method for combining single-value forecasts should depend on characteristics
of the individual forecasts being combined and their relationships with each other. This study attempts
to develop a guideline to choose effective combining techniques by using analytical derivations and/or
hydrological experiments. The two most popular combining techniques, Simple Average (SA) and
Weighted Average (WA), are compared from theoretical angles. The standard deviation of the combined
forecast error is quantified as a function of the ratio of the standard deviation and the correlation coef-
ficient between the two constituent forecast errors. Following the theoretical study, empirical research
for eight combining methods including SA and WA methods was conducted to confirm the theoretical
findings of this study and to verify results from other research carried out. The results of the empirical
experiments are summarized to confirm the effects of the eight combining methods. The major findings
include that: (1) SA yields reasonable results for any combination of forecasts when information of con-
stituent forecasts is absent, (2) one cannot expect combining technique to yield significant improvement
when two constituent forecasts are highly correlated, (3) the Regression and ANN combining methods
can remove the effects of bias in the constituent forecasts and yield unbiased combining forecasts, and
(4) when the constituent forecasts have nonstationary errors, a time-varying-weight combining method
yields better results than the constant-weight methods in most cases. Based on these theoretical findings
and empirical results, a guideline for combining methods is provided. The guideline suggests appropriate
methods for combining single-value streamflow forecasts by considering bias and nonstationarity of the
errors in the individual forecasts; the ratio of the error variance of any two forecasts and cross-correlation
among the forecasts.

� 2009 Elsevier B.V. All rights reserved.

Introduction

Our lives face an endless series of imperfectly informed deci-
sions: what to eat, whether or not to bring an umbrella, what move
to make in a game, and numerous others. Any important decision is
generally based on a wide variety of information, in particular in
the form of forecasts.

As anyone else, investors want accurate forecasting. As a result,
there may be dozens of professional analysts ready and willing to
predict the price of any given stock. While some will believe any
forecaster who has performed best in the past, the wise investor
consults several good forecasters and then ‘‘combines” their fore-
casts with his/her own rule. The investor may consider numerous
factors based on statistical analysis, anecdotal evidence, or per-

sonal experience: ‘‘Forecaster A is excellent for Item X, especially
in winter”, ‘‘Forecaster B has performed very well over the last
few days”, ‘‘Forecaster C has hit no jackpots, but usually achieves
limited successes”, and so on. This study concerns the proper
choice of such factors: what characteristics of a forecast should
be considered, and how does this choice affect the accuracy of
the combined forecast?

From the theoretical point of view, the combining techniques of
single-value forecasts can be explained by an optimal estimation
theory (Deutsch, 1965; Liebelt, 1967; Schweppe, 1973; Maybeck,
1979), which has been widely applied in science and industry.
The optimal estimator was provided as a computational function
that uses measurements to deduce a minimum error estimate of
the state in a system. This is possible by utilizing knowledge of sys-
tem and measurement dynamics, assumed statistics of system
noises and measurement errors, and initial condition information
(Gelb, 1974). Many estimation procedures such as least squares,
weighted least square, minimum variance, and minimum variance
unbiased estimation procedures can be employed for optimal
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estimation (Liebelt, 1967). These procedures are theoretically iden-
tical to the combining forecast methods. More modern estimation
techniques such as the Kalman filter in the time domain and the
kriging in the space domain were also developed based on the opti-
mal estimation theory (Gelb, 1974; Isaaks and Srivastava, 1989).

Forecast combining techniques have been extensively studied
in the field of econometrics ever since the seminal article of Bates
and Granger (1969). More than 200 works on the topic were re-
viewed and summarized by Clemen (1989). He concluded that
forecasts can be substantially improved by combining multiple
individual forecasts, and laid out the most effective techniques dis-
covered so far.

The concept of combining forecasts has also taken root in cli-
mate modeling. In this context it is usually based on the work of
Vislocky and Fritsch (1995) and Krishnamurti et al. (1999), who
developed the ‘multi-model ensemble’ and ‘multi-model super-
ensemble’ methods respectively. Vislocky and Fritsch (1995) and
Fritsch et al. (2000) showed that the simple average of model out-
puts (i.e., a multi-model ensemble) is a more skillful predictor than
the best individual forecast. In practice, however, multi-model
forecasts are usually created by fitting a weighted average of the
individual forecasts; this is called a multi-model super-ensemble.
This method has been widely used to produce accurate long-range
climate forecasts (Krishnamurti et al., 1999, 2000, 2003; Kharin
and Zwiers, 2002; Kumar et al., 2003; Coelho et al., 2004). How-
ever, the simple average may be a choice when many scenarios ex-
ist in an ensemble because estimating many parameters in the
weighted average may be impossible. Makridakis and Winkler
(1983) also illustrated that the combined forecast decreases most
of the possible errors but they did not obtain further significant
gains when they employed more than five individual forecasts.
Raftery et al. (2005) proposed a Bayesian Model Average (BMA)
method for combining predicted distributions from different
ensemble models. The BMA pdf (probability density function) fore-
cast can be provided by a weighted average of forecasted pdfs
based on each of the individual model forecasts. Vrugt et al.
(2006) developed a multi-objective formulation for ensemble fore-
casts using BMA. They applied the approach for 48-h ensemble
data of surface temperature and sea level pressure, and multi-mod-
el seasonal forecasts of temperature. Sloughter et al. (2007) also
applied the BMA for probabilistic quantitative precipitation fore-
casting whose predicted pdfs are not approximated by normal
distribution.

There have been a few applications made in the field of hydro-
logic forecasting as well. McLeod et al. (1987) adopted combining
techniques to predict flow. They made several individual forecasts
using a conceptual rainfall–runoff model and Box and Jenkins
(1970) time series models, then combined these forecasts by a
weighted average based on the error covariance. Although their
experiment tested only a few different combining methods, they
found significant improvements in the performance of the pro-
posed combining method. More recently, Shamseldin et al.
(1997) combined the outputs from five rainfall–runoff models
and 11 catchments using three different approaches: a simple
average, a weighted average, and a neural network. The combined
daily discharge estimates were consistently more accurate than
the best individual estimate, especially for the weighted average
and the neural network. This work was extended by Shamseldin
and Oconnor (1999) who proposed a real-time model capable of
combining one conceptual and two empirical (black-box) models.
They proved that updating continuously discharge forecasts by a
real-time combining method could improve the discharge fore-
casts of individual rainfall–runoff models.

Coulibaly et al. (2005) used the weighted average method to
improve their hydrologic forecasts, a technique which proved skill-
ful up to 4 days ahead. The individual forecasts in this case were

based on three quite different models: a nearest-neighbor model,
a conceptual model, and an artificial neural network. Combining
approaches also have been employed to probabilistic forecasting
problems. Georgakakos et al. (2004) illustrated that the multi-
model ensemble mean was in general an improvement over the
best single-model simulation. Ajami et al. (2006) extended the
work of Georgakakos et al. (2004) by testing several advanced mul-
ti-model combining techniques for hydrological forecasting. Our
objective also is to provide more statistically sophisticated multi-
model combining techniques although we deal with deterministic
forecasts. Kim et al. (2006) tested five different combining methods
for two rainfall–runoff model simulation outputs, with the goal of
developing a more accurate ensemble streamflow prediction sys-
tem. The combination methods considered in this work were the
simple average, constant coefficient regression, switching regres-
sion, the sum of squared error, and the artificial neural network
methods. These were applied to two individual models: a concep-
tual rainfall–runoff model called TANK, and a black-box rainfall–
runoff model based on an ensemble of neural networks. Among
these methods, the sum of squared error to obtain time-varying
weights performed best with respect to the root-mean-square er-
ror. The first part of the present study will introduce the most com-
mon methods of combining hydrologic forecasts. Although Kim
et al. (2006) also provided a broad review of those combining
methods commonly used in economic forecasting and dealt with
some hydrological applications, they could not provide an appro-
priate combining guideline for hydrologic forecasters. Recently,
Marshall et al. (2007) introduced a hierarchical framework for
combining rainfall–runoff model outputs. This framework can esti-
mate time-varying weights (probabilities) of constituent models.
Moreover, they used the combining weights to select an appropri-
ate hydrologic model for a certain catchment condition (e.g. low
flows). However, their study focused on applying the new ap-
proach for combining hydrologic simulation outputs rather than
providing a comprehensive combining guideline. Several studies
employed the BMA approach to hydrologic forecasting. Duan
et al. (2007) applied the BMA to develop probabilistic hydrologic
predictions from multiple predictions produced by hydrologic
models. Neuman (2003) and Ye et al. (2004) suggested a maximum
likelihood BMA method and asserted that their approach is compu-
tationally feasible and applicable to a wide range of real-world
hydrologic problems when reliable prior information is
insufficient.

As Armstrong (1989) criticized, there are few guidelines specific
enough to be useful to forecasters because they did not success-
fully provide appropriate combining methods in real situations.
Despite extensive studies of the topic of ‘‘combining”, this remains
true today. In economics, Menezes et al. (2000) provided a reason-
able guideline for the use of combining forecasts. They focused on
three properties of the forecast errors which were variance, skew-
ness and serial correlation of forecast errors. The combination
methods considered in their study, however, were only constant
weighting methods based on a linear combination. Armstrong
(2001) provided a more general guideline for economic forecasts.
He provided eight key principles for combining forecasts and three
conditions favoring combining forecasts. The key principles are to
use different forecast models, forecasts from at least five methods,
formal procedures for combining, equal weights when facing high
uncertainty, weights based on evidence of prior accuracy, weights
based on track records, if the evidence is strong, and weights based
on good domain knowledge. The three conditions favoring combin-
ing forecasts are when there is uncertainty as to the selection of
the most accurate forecasting method, uncertainty associated with
the forecasting situation, and high cost for large errors. However,
his guideline may be too general to be employed for hydrologists.
The most appropriate combining method depends heavily on the
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