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Introduction

SUMMARY

Wetland restoration is often measured by how close the spatial and temporal water level (stage) pat-
terns are to the pre-drainage conditions. Driven by rainfall, such multivariate conditions are governed
by nonstationary, nonlinear, and nonGaussian processes and are often simulated by physically based
distributed models which are difficult to run in real time due to extensive data requirements. The objec-
tive of this study is to provide the wetland restorationists with a real time rainfall-stage modeling tool
of simpler input structure and capability to recognize the wetland system complexity. A dynamic mul-
tivariate Nonlinear AutoRegressive network with eXogenous inputs (NARX) combined with Principal
Component Analysis (PCA) was developed. An implementation procedure was proposed and an applica-
tion to Florida Everglade’s wetland systems was presented. Inputs to the model are time lagged rainfall,
evapotranspiration and previously simulated stages. Data locations, preliminary time lag selection, spa-
tial and temporal nonstationarity are identified through exploratory data analysis. PCA was used to
eliminate input variable interdependence and to reduce the problem dimensions by more than 90%
while retaining more than 80% of the process variance. A structured approach to select optimal time
lags and network parameters was provided. NARX model results were compared to those of the linear
Multivariate AutoRegressive model with eXogenous inputs. While one step ahead prediction shows
comparable results, recursive prediction by NARX is far more superior to that of the linear model. Also,
NARX testing under drastically different climatic conditions from those used in the development dem-
onstrates a very good and robust performance. Driven by net rainfall, NARX exhibited robust stage pre-
diction with an overall Efficiency Coefficient of 88%, Mean Square Error less than 0.004 m?, a standard
error less than 0.06 m, a bias close to zero and normal probability plots show that the errors are close to
normal distributions.
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where surface water generally moves slowly downstream in re-
sponse to the low land surface water gradient. Storm events within

Wetland hydrology is perhaps the most important key element
in wetland restoration projects. Wetlands have been drained and
destroyed by human activities such as drainage, filling, dam con-
struction, water diversions, groundwater pumping, canal dredging,
and levee delineation. Such activities altered the spatial and tem-
poral hydropattern characteristics including timing, amplitude,
frequency, and duration of high and low waters. For example, the
implementation of water management measures in Florida’s Ever-
glades in the late 1940s has destroyed many tree islands by either
inundation due to prolonged high-water levels or by peat fires due
to prolonged low-water levels. Improvement of such management
practices requires proper prediction, as a first step, of restoration
targets based on pre-drainage wetland response to current weath-
er conditions.

The pre-drainage wetland hydrology is dominated by surface
water processes and is driven by rainfall and evapotranspiration
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this system have an immediate local impact and a fading but per-
sistently prolonged effect on areas downstream. Such a highly non-
linear stage is typically simulated by two dimensional physically
based models that are typically used in planning studies and are
difficult to run in real time applications due to extensive input data
preparation and processing requirements. A real time modeling
tool of such a complex environment with a simpler input structure
to predict pre-drainage stage target time series is the focus of this
study. Real time optimization of the managed system inflows and
outflows, as a second step, to achieve the predicted stage targets is
deferred to another manuscript.

System theoretic approach often serves as a viable alternative to
physical modeling in real time applications. In this approach, dif-
ference or differential equations are used to characterize mapping
of the input to the output directly with less emphasis on the inter-
nal structure driving the physical process. An example of this ap-
proach is the linear time series models (Salas et al., 1980; Bras
and Rodriguez-Iturbe, 1985) where the emphasis has been the
rainfall-runoff (R-R) modeling for flooding prediction. Although
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these models produced reasonable predictions in many applica-
tions, they did not recognize the inherent nonlinearity of the R-R
relationship. Those studies found R-R mapping to be complex,
nonlinear, and nonstationary both spatially and temporally.

While a considerable research has been conducted on R-R stud-
ies, none or little was done to address the rainfall-stage (R-S) pro-
cess. Van Lent (1995) provided the first attempt to model the R-S
process in the Florida Everglades wetlands. He used weekly data at
three rainfall stations and one Potential Evapo-Transpiration, PET,
station to predict weekly stage target at three locations. In the ab-
sence of historical pre-drainage observations, the data used for the
stage targets are taken from the 1965-1995 output of the South
Florida Water Management District (SFWMD) physically based dis-
tributed Natural System Model (NSM), V4.6, which is based on
extensive ecological conceptualization (SFWMD, 2000). Van Lent
focused on modeling rainfall, PET, and stage residuals’ covariance
structure using a linear Autoregressive Moving Average model
(ARMA). Based on his analysis, rainfall residuals were uncorrelated
and nonGaussian while both PET and stage were correlated but
Gaussian. He concluded that any stochastic model for this relation-
ship must take nonGaussian white noise and Gaussian correlated
signals to produce a Gaussian correlated signal. While the model
results for one step ahead prediction were very reasonable, the re-
sults for the recursive prediction were unsatisfactory. Van Lent
(1995) concluded that a linear model is not adequate for recursive
prediction of the R-S relationship.

Artificial neural network and nonlinear modeling

As a system theoretic model, ANNs are a mathematical scheme
with interconnected nodes and layers that is capable of mapping
complex nonlinear processes from the input side to the output
side. They are typically composed of three parts: inputs, one or
many hidden layers and an output layer. Hidden and output neu-
ron layers include the combination of weights, biases, and transfer
functions. A neuron on a given layer is a hub that receives weighted
contributions from the preceding layer’s neurons and it sends
weighted contributions to the succeeding layer’s neurons. The
weights are connections between neurons on one layer and an-
other while the transfer functions are linear or nonlinear algebraic
functions. When a pattern is presented to the network, weights
and biases are adjusted so that a particular output is obtained.
Such a learning is often achieved by means of backpropagation
where such weights and biases are updated in the direction in
which the performance function (e.g., Mean Square Error, MSE) de-
creases most rapidly (steepest descent). Because this does not nec-
essarily lead to the fastest convergence, numerical nonlinear
optimization techniques such as Conjugate Gradient and Leven-
berg-Marquardt Algorithms are often employed (Masters, 1995).

A satisfactory level of ANN training is the one that results in a
good network generalization (i.e., satisfactory network perfor-
mance on input data that was not part of the training). To help
the network generalize, two data sets during training (modeling)
are utilized; one to develop (train) the network and one to validate
(verify) the performance. The training is stopped early (despite a
continuous result improvement based on the training data set) if
the network performance on such verification data failed to im-
prove, remained the same, or deteriorated for a number of consec-
utive iterations.

ANNSs can be classified into static feedforward networks and dy-
namic feedback networks. The feedforward networks are the most
common form of ANNs. The architecture of this network consists of
neurons connected by links across the input, hidden, and output
layers. In this network, learning is based on a purely feedforward
input to output mapping. The resulting weights are fixed where

the state of neurons at a given time is determined by the input-
output pattern for that time only without any consideration of
the previous inputs, outputs, and states of network and hence
called static network. Such networks are easily constructed with
simple optimization algorithm and are of wide use in hydrology.
These networks, however, are not efficient for highly dimensional;
time dependent problems because of the slow convergence with a
likely freeze in local minima, system memory modeling deficiency,
and the need for a large training data set. The dynamic network has
feedback connection(s) from the output layer (time delayed out-
puts); and/or hidden layers (previous states). The feedback feature
provides a powerful learning capability for the network when
memory is important in the system being modeled. The resulting
network weights are adjustable to account for the previous neuron
states, input and output. The dynamic network requires less train-
ing data sets for the same problem size (compared to static net-
work). However, there are always network stability issues due to
the dynamic nature of weights. A comparison between static and
dynamic networks in an application to rainfall-runoff (R-R) mod-
eling is provided by Chiang et al. (2004).

R-R modeling receives a major, if not the most major, share
among ANN applications in hydrology (Hsu et al., 1995; Sajikumar
and Thandaveswara, 1999; Govindaraju and Ramachandra Rao,
2000; Chang and Chen, 2001; Chang et al., 2002, 2004; Rajurkar
et al., 2004; Ali et al., 2006, and Lin and Wang, 2007). In these stud-
ies, ANN architecture, learning algorithms and parameters in addi-
tion to R-R memory structure and memory length were the main
issues of interest to address the nonlinear dynamics and complex-
ity of the R-R process. ANN studies to address the R-S relationship
are limited in the literature. One of these models reported by
Chang and Chen, 2003 used a “novel” Radial Basis Function ANN
to develop a one time step forecasting model for water stage at
one station in an estuary subject to riverine and marine processes
as a function of lunar calendar and measured stage at six locations.
They used a two step process: (1) unsupervised training using
fuzzy min-max clustering and (2) supervised learning using multi-
variate linear regression. The one hour forecasting results demon-
strate satisfactory performance. No recurrent and/or multi stage
concurrent prediction was reported in their study.

In this study, we provide a framework for the practitioner to de-
velop and apply an ANN based model to predict stage target time
series in response to rainfall and PET (aka Rainfall Driven Formula
(RDF)) that recognizes the nonlinear, multivariate and temporal
dynamics of large wetland systems and to demonstrate its efficacy
in addressing system spatial and temporal nonstationarities. An
application of this framework to Florida’s Everglades will be
presented.

Development of Rainfall Driven Formula

The development of the nonlinear RDF is based on the original
linear AutoRegressive model with eXogenous input (ARX). To
understand the nonlinear model, we first present the linear case
as developed by Van lent (1995) followed by a full presentation
of the RDF based on a Nonlinear AutoRegressive Dynamic Network
with eXogenous variable (NARX).

Multivariate AutoRegressive model with eXogenous variable (ARX)

Van Lent (1995) applied the moving average coefficient matrix
to rainfall and PET residual vector in lieu of the error vector which
is, in essence, equivalent to AutoRegressive model with eXogenous
input (ARX) (Box and Jenkins, 1970). The construction of the ARX
model for this study is important to: (1) understand the develop-
ment of the nonlinear model and (2) perform comparison between
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