
Quantifying the place of karst aquifers in the groundwater to surface water
continuum: A time series analysis study of storm behavior in Pennsylvania
water resources

Ellen K. Herman a,*, Laura Toran b, William B. White c

a Department of Geology, Bucknell University, 224 O’Leary Center, Lewisburg, PA 17837, United States
b Department of Geology, Temple University, Philadelphia, PA 19122, United States
c Department of Geosciences and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, United States

a r t i c l e i n f o

Article history:
Received 11 May 2008
Received in revised form 13 July 2009
Accepted 16 July 2009

This manuscript was handled by P. Baveye,
Editor-in-Chief with the assistance of
Michel Bakalowicz, Associate Editor

Keywords:
Karst
Time series analysis
Spectral analysis
Springs
Water resources

s u m m a r y

Though karst aquifers have commonly been identified, with respect to their behavior, as intermediate
between ground and surface water, their putative location between these end members is generally
descriptive rather than quantitative. Autocorrelation and spectral analysis of data from four karst springs,
three wells, and eight stream gauges in Pennsylvania illustrate that specific karst water resources exhibit
widely varying inertia with lag times that overlap those of groundwater and surface water. When ana-
lyzed in the frequency domain, the same data reveal distinctive patterns for each type of water resource.

The four springs display characteristic lag times ranging from 5 to 25 days, compared to 1–10 days for
streams and 11–46 days for wells. Physically, karst waters may behave as a mix of porous media, fracture,
and open-channel flow, but in temporal terms the balance of this mix results in a range of system behav-
iors with characteristic periodicities evident in the karst aquifers. In the frequency domain, karst aquifers
manifested slow flow paths as a gradual fall-off at lower frequency and quick flow paths as a flattening at
high-frequency.

Our comparison of water resources across different time periods revealed that the period considered
can have strong effects on results. One spring displayed characteristic lag times of 12 and 25 days for
two different time spans. To directly compare water resources over relatively short time scales, precipi-
tation inputs must be similar and data sets must cover the same period; otherwise, substantial differ-
ences in lag times can be due to data collection and input differences rather than system
characteristics. This limitation is less when the same data are analyzed in the frequency domain.

� 2009 Elsevier B.V. All rights reserved.

Introduction

Many investigators have considered how a karst aquifer alters a
storm signal between recharge and spring (Brown, 1973; Dreiss,
1982, 1983, 1989a,b; Mangin, 1984; de Vera, 1984; Padilla and
Pulido-Bosch, 1995; Eisenlohr et al., 1997a,b; Halihan et al.,
1998; Halihan and Wicks, 1998; Larocque et al., 1998; Bouchaou
et al., 2002; Amraoui et al., 2003; Denic-Jukic and Jukic, 2003;
Rahnemaei et al., 2005). The storm signal in turn has been used
to deduce source waters and aquifer structure (e.g., Smart, 1988;
Desmarais and Rojstaczer, 2002; Birk et al., 2004). The time-invari-
ant transfer function is appealing for storm signal interpretation
because of its simplicity and its method of combining all storms
across the monitored time series into a single signal. Non-linear
time variant analysis, such as wavelet transforms, further defines
rainfall–runoff relationships in karst springs and may enable better

prediction of input–output relations where non-stationary behav-
ior occurs (Lambrakis et al., 2000; Beaudeau et al., 2001; Labat
et al., 2000, 2001, 2002; Majone et al., 2004; Dryden et al., 2005).
However, in comparing systems with substantially different signal
magnitudes, time-invariant transfer functions based on autocorre-
lation remain very useful.

Mangin (1984) first applied the calculation of autocorrelation to
karst springs in the Pyrenees, characterizing their inertia to assess
the time a signal persisted in the system. Additional studies have
employed similar techniques with some adding cross-correlation
between precipitation and other variables such as discharge and
turbidity (de Vera, 1984; Jemcov et al., 1998–1999; Bouchaou
et al., 2002; Amraoui et al., 2003; Denic-Jukic and Jukic, 2003;
Massei et al., 2006). In the groundwater literature, autocorrelation
and cross-correlation are only rarely employed to describe storm
responses in wells, largely due to high inertia evident in most wells
(Lee and Lee, 2000; Rademacher et al., 2002); these techniques are,
however, implemented in groundwater settings with higher fre-
quency variations like coastal aquifers and wells subject to earth

0022-1694/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.jhydrol.2009.07.043

* Corresponding author. Tel.: +1 570 577 3088; fax: +011 570 577 3031.
E-mail address: ekh008@bucknell.edu (E.K. Herman).

Journal of Hydrology 376 (2009) 307–317

Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/ locate / jhydrol

http://dx.doi.org/10.1016/j.jhydrol.2009.07.043
mailto:ekh008@bucknell.edu
http://www.sciencedirect.com/science/journal/00221694
http://www.elsevier.com/locate/jhydrol


tides (Shih et al., 1999; Shih and Lin, 2002; Marechal et al., 2002).
In surface water study, autocorrelation has been used for several
decades to characterize catchments responding to storms, and
has recently been used by climate scientists attempting to separate
trends from autocorrelation in long-term stream flow signals (e.g.,
Yue et al., 2002; Potts et al., 2003; Labat et al., 2004; Coulibaly and
Burn, 2005; Kallache et al., 2005; Pagano and Garen, 2005).

This study focuses on autocorrelation of high-frequency flow
and stage data from karst springs, wells, and streams in Pennsylva-
nia. Multiple sites with different characteristics were examined to
discover where the karst springs fit in among the groundwater
wells and surface streams in terms of inertia. The wells selected
were screened in clastic rocks, and the surface streams selected,
while sometimes fed by karst spring systems, are not sinking and
rising streams. These selections were made to insure that the
behavior of neither the wells nor the streams was controlled by
karst flow regimes. The consistent assumption among hydrogeolo-
gists is that streams pass storm signals very quickly, but signals in
wells, if present, persist across long periods. We examine this
assumption and consider if karst springs fit in the middle, as often
described (White, 1988; Ford and Williams, 1989; White, 2002;
Lee and Lee, 2000; Pinault et al., 2001; Denic-Jukic and Jukic,
2003; Quinn et al., 2006).

Methods

A time series data set can be separated into three components,
overall trend, noise, and autocorrelation. Autocorrelation defines
the dependence of a data point on prior points. Many climate-ori-
ented hydrologists are interested in removing the autocorrelation
of time series to examine the trend in climatic data over time;
conversely, the autocorrelation portion of the series, once the
trend is removed, reveals important information about the system
itself in terms of temporal behavior. Mangin (1984) first popular-
ized the autocorrelation approach of Box and Jenkins (1976) as a
measure of system inertia in karst, defining autocorrelation as
follows:

rk ¼
Pn�k

i¼1 ðxi � �xÞðxiþk � �xÞPn
i¼1ðxiþk � �xÞ2

ð1Þ

where rk is the autocorrelation coefficient at any point in the series,
k is a point in the series, x is the data series with the trend removed,
and �x is the arithmetic mean of the series (Padilla and Pulido-Bosch,
1995; Eisenlohr et al., 1997b; Larocque et al. 1998; Amraoui et al.,
2003). The slope of the autocorrelation function illustrates whether
individual data points have long-term effects on the entire data ser-
ies. Because individual rainfall measurements have little to no effect
on the preceding and subsequent measurements, the autocorrela-
tion function drops off quickly indicating that precipitation has
low inertia. A karst spring with high storage would be expected to
manifest an autocorrelation function with a low slope as an individ-
ual measurement of water level should be closely related to subse-
quent and previous measurements. For the purposes of this study,
we take the characteristic lag time as the lag at which the correla-
tion coefficient, rk, is equal to 0.2, allowing comparison of different
systems (Mangin, 1984). A system with persistent storage where
individual measurements are closely related to other measure-
ments will have a longer characteristic lag indicating greater inertia.
Below 0.2, the autocorrelation coefficient rk is essentially identical
to the autocorrelation of noise (Mangin, 1984). There are additional
ways of selecting lag time or characterizing the autocorrelation
function (e.g., Massei et al., 2006).

Another common way of examining the autocorrelation func-
tion involves transforming the correlogram of a time series (the

function rk over a series of time lags) into the frequency domain
as the following spectral density function (Sf):

Sf ¼ 2 1þ 2
Xm

k¼1
Dkrk cosð2pfkÞ

h i
ð2Þ

Dk ¼
1
2

1þ cosp k
m

� �
ð3Þ

where f is a given frequency and Dk is the Tukey filter (Larocque
et al. 1998; Amraoui et al., 2003). The fast Fourier transform (FFT)
of the raw data series may also be analyzed in similar fashion; how-
ever, the FFT of the autocorrelation function (rk) highlights periodic
behavior in the data series (Lee et al., 2005; Massei et al., 2006).

Other researchers have used the regulation time (Treg) of the
system to determine the duration of the impulse response or the
length of time the input signal persists in the system by marking
when the spectral density of the autocorrelation function ap-
proaches zero. There is ambiguity in the calculation of Treg in the
literature. Some calculate Treg by determining the frequency where
the maximum spectral density is reduced by half and inverting that
frequency to yield Treg (Larocque et al., 1998). Others use the in-
verse of a break frequency where spectral density drops off to an-
other specified value (Lee and Lee, 2000; Bouchaou et al., 2002).

For the purposes of this study, we employ a different approach
to analyzing the frequency spectrum that preserves more of the
information in the signal. Rather than identifying a frequency
and corresponding period where Sf crosses an arbitrary boundary,
we examine the spectrum of each autocorrelation function in
log–log space to describe the frequency where the power function
has breaks in slope revealing different behavior modes.

The time lag and frequency analysis both provide measures of
memory in the system. However, the frequency analysis is less sen-
sitive to the sampling interval and correlation between distant
events (Larocque et al., 1998) and can reveal basic information
about the physical characteristics of a system (Molenat et al.,
1999).

Site selection and data description

Springs

Four springs in Pennsylvania were monitored for inclusion in
this study, Arch Spring in Blair County, Nolte Spring in Lancaster
County, and Tippery Spring and Near Tippery Spring in Huntingdon
County (Fig. 1). Instruments were installed at Nolte spring from the
fall of 2002 through the fall of 2004; at Arch spring from winter of
2002 to spring of 2005; and at Tippery and Near Tippery from sum-
mer of 2004 to winter of 2005. These sites were selected for their
varying baseflow discharges (from 0.04 to 0.5 m3/s) and drainage
areas (from 3 to 25 km2). Key characteristics of each site including
drainage basin area, baseflow, periods analyzed, and recording
intervals are presented in Table 1a. Portions of the monitoring re-
cord at the springs were not used in this study either because the
data had substantial gaps or irregularities that could not be
corrected.

Each site was equipped with monitoring equipment designed to
capture long-term data sets. A Global Water 8-channel logger re-
corded specific conductance, stage, and temperature at sub-hourly
intervals; a sample data set is presented in Fig. 2. Complete data
sets for all water resources are included in the supplementary
material. A stormwater sampler was also in place at each site,
but those data are not presented here. Site visits spaced up to
one month apart confirmed logged conductivity, stage, and tem-
perature values. Hourly precipitation data for the spring areas are
available from the National Oceanic and Atmospheric Administra-
tion’s (NOAA) National Climatic Data Center (NCDC) webpage
(www.ncdc.noaa.gov).
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