
DFRWS 2015 Europe

Characterization of the windows kernel version variability for
accurate memory analysis

Michael I. Cohen
Google Inc., Brandschenkestrasse 110, Zurich, Switzerland

Keywords:
Memory analysis
Incident response
Binary classification
Memory forensics
Live forensics

a b s t r a c t

Memory analysis is an established technique for malware analysis and is increasingly used
for incident response. However, in most incident response situations, the responder often
has no control over the precise version of the operating system that must be responded to.
It is therefore critical to ensure that memory analysis tools are able to work with a wide
range of OS kernel versions, as found in the wild. This paper characterizes the properties of
different Windows kernel versions and their relevance to memory analysis. By collecting a
large number of kernel binaries we characterize how struct offsets change with versions.
We find that although struct layout is mostly stable across major and minor kernel ver-
sions, kernel global offsets vary greatly with version. We develop a “profile indexing”
technique to rapidly detect the exact kernel version present in a memory image. We can
therefore directly use known kernel global offsets and do not need to guess those by
scanning techniques. We demonstrate that struct offsets can be rapidly deduced from
analysis of kernel pool allocations, as well as by automatic disassembly of binary functions.
As an example of an undocumented kernel driver, we use the win32k.sys GUI subsystem
driver and develop a robust technique for combining both profile constants and reversed
struct offsets into accurate profiles, detected using a profile index.
© 2015 The Author. Published by Elsevier Ltd on behalf of DFRWS. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Memory analysis has become a powerful technique for
the detection and identification of malware, and for digital
forensic investigations (Ligh et al., 2010, 2014).

Fundamentally, memory analysis is concerned with
interpreting the seemingly unstructured raw memory data
which can be collected from a live system into meaningful
and actionable information. At first sight, the memory
content of a live system might appear to be composed of
nothing more than random bytes. However, those bytes are
arranged in a predetermined order by the running software
to represent a meaningful data structure. For example
consider the C struct:

The compiler will decide how to overlay the struct fields
in memory depending on their size, alignment re-
quirements and other consideration. So for example, the
CreateTime field might get 8 bytes, causing the Image-
FileName field to begin 8 bytes after the start of the
_EPROCESS struct.

A memory analysis framework must have the same
layout information in order to know where each field
should be found in relation to the start of the struct. Early
memory analysis systems hard coded this layout informa-
tion which was derived by other means (e.g. reverseE-mail address: scudette@google.com.

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/di in

http://dx.doi.org/10.1016/j.diin.2015.01.009
1742-2876/© 2015 The Author. Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Digital Investigation 12 (2015) S38eS49

http://creativecommons.org/licenses/by-nc-nd/4.�0/
mailto:scudette@google.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2015.01.009&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2015.01.009
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://dx.doi.org/10.1016/j.diin.2015.01.009
http://dx.doi.org/10.1016/j.diin.2015.01.009


engineering or simply counting the fields in the struct
header file (Schuster, 2007)).

This approach is not scalable though, since the struct
definition change routinely between versions of the oper-
ating system. For example, in the above simplified struct of
an _EPROCESS, if additional fields are inserted, the layout of
the field members will change to make room for the new
elements. So for example, if another 4 byte field is added
before the CreateTime field, all other offsets will have to
increase by 4 bytes to accommodate the new field. This will
cause all the old layout information to be incorrect and our
interpretation of the struct in memory to be wrong.

Modern memory analysis frameworks address the var-
iations across different operating system versions by use of
a version specific memory layout template mechanism. For
example in Volatility (The Volatility Foundation, 2014) or
Rekall (The Rekall Team, 2014a, b) this information is called
a profile.

The Volatility memory analysis framework (The
Volatility Foundation, 2014) is shipped with a number of
Windows profiles embedded into the program. The user
chooses the correct profile to use depending on their
image. For example, if analyzing a Windows 7 image, the
profile might be specified as Win7SP1x64. In Volatility, the
profile name conveys major version information (i.e. Win-
dows 7), minor version information (i.e. Service Pack 1) and
architecture (i.e. �64). Volatility uses this information to
select a profile from the set of built-in profiles.

Deriving profile information

The problem still remains how to derive this struct
layout information automatically. The Windows kernel
contains many struct definitions, and these change for each
version, so a brute force solution is not scalable (Okolica
and Peterson, 2010).

Memory analysis frameworks are not the only case
where information about memory layout is required. Spe-
cifically, when debugging an application, the debugger
needs to know how to interpret the memory of the
debugged program in order to correctly display it to the
user. Since the compiler is the one originally deciding on
the memory layout, it makes sense that the compiler gen-
erates debugging information about memory layout for the
debugger to use.

On Windows systems, the most common compiler used
is the Microsoft Visual Studio compiler (MSVCC). This
compiler shares debugging information via a PDB file
(Schreiber, 2001), generated during the build process for
the executable. The PDB file format is unfortunately un-
documented, but has been reverse engineered sufficiently
to be able to extract accurate debugging information, such
as struct memory layout, reliably (Schreiber, 2001; Dolan-
Gavitt, 2007a).

The PDB file for an executable is normally not shipped
together with the executable. The executable contains a
unique GUID referring to the PDB file that describes this
executable. When the debugger wishes to debug a partic-
ular executable, it can then request the correct PDB file
from a symbol server. This design allows production

binaries to be debugged, without needing to ship bulky
debug information with final release binaries.

The PDB file contains a number of useful pieces of in-
formation for a memory analysis framework:

� Struct members and memory layout. This contains in-
formation about memory offsets for struct members,
and their types. This is useful in order to interpret the
contents of memory.

� Global constants. The Windows kernel contains many
important constants, which are required for analysis. For
example, the PsActiveProcessHead is a constant pointer
to the beginning of the process linked list, and is
required in order to list processes by walking that list.

� Function addresses. The location of functions inmemory
is also provided in the PDB file e even if these functions
are not exported. This is important in order to resolve
addresses back to functions (e.g. in viewing the Inter-
rupt Descriptor Table e IDT).

� Enumeration. In C an enumeration is a compact way to
represent one of a set of choices using an integer. The
mapping between the integer value and a human
meaningful string is stored in the PDB file, and it is
useful for interpreting meaning from memory.

Characterizing kernel version variability

As described previously, the Volatility tool only contains
a handful of profiles generated for different major releases
of the Windows kernel. However, each time the kernel is
rebuilt by Microsoft (e.g. for a security hot fix), the code
could be changed, and the profile could be different. The
assumption made by the Volatility tool is that these
changes are not significant and therefore, a profile gener-
ated from a single version of a major release will work on
all versions from that release.

We wanted to validate this assumption. We collected
the Windows kernel binary (ntkrnlmp.exe, ntkrpamp.exe,
ntoskrnl.exe) from several thousand machines in the wild
using the GRR tool (Cohen et al., 2011). Each of these bi-
naries has a unique GUID, and we were therefore able to
download the corresponding PDB file from the public
Microsoft symbol server. We then used Rekall's mspdb
parser to extract debugging information from each PDB file.

This resulted in 168 different binaries of the Windows
kernel for various versions (e.g. Windows XP, Windows
Vista, Windows 7 and Windows 8) and architectures (e.g.
I386 and AMD64). Clearly, there are many more versions of
the Windows kernel in the wild than exist in the Volatility
tool. It is also very likely that we have not collected all the
versions that were ever released by Microsoft, so our
sample size, although large, is not exhaustive.

Fig. 1 shows sampled offsets of four critical struct
members for memory analysis:

� The _EPROCESS.VadRoot is the location of the Vad within
the process. This is used to enumerate process alloca-
tions (Dolan-Gavitt, 2007b).

� The _KPROCESS.DirectoryTableBase is the location of the
Directory Table Base (i.e. the value loaded into the CR3

M.I. Cohen / Digital Investigation 12 (2015) S38eS49 S39



Download English Version:

https://daneshyari.com/en/article/457883

Download Persian Version:

https://daneshyari.com/article/457883

Daneshyari.com

https://daneshyari.com/en/article/457883
https://daneshyari.com/article/457883
https://daneshyari.com

