Digital Investigation 12 (2015) S61-S71

journal homepage: www.elsevier.com/locate/diin

Contents lists available at ScienceDirect

Digital Investigation

al
Investigation

DFRWS 2015 Europe

SIGMA: A Semantic Integrated Graph Matching Approach for @CmssMark
identifying reused functions in binary code™

Saed Alrabaee’, Paria Shirani, Lingyu Wang, Mourad Debbabi

Computer Security Laboratory, Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Quebec, Canada

ABSTRACT

Keywords:

Function identification
Reverse engineering
Binary program analysis
Malware forensics
Digital forensics

The capability of efficiently recognizing reused functions for binary code is critical to many
digital forensics tasks, especially considering the fact that many modern malware typically
contain a significant amount of functions borrowed from open source software packages.
Such a capability will not only improve the efficiency of reverse engineering, but also
reduce the odds of common libraries leading to false correlations between unrelated code
bases. In this paper, we propose SIGMA, a technique for identifying reused functions in
binary code by matching traces of a novel representation of binary code, namely, the Se-
mantic Integrated Graph (SIG). The SIG s enhance and merge several existing concepts from
classic program analysis, including control flow graph, register flow graph, and function
call graph into a joint data structure. Such a comprehensive representation allows us to
capture different semantic descriptors of common functionalities in a unified manner as
graph traces, which can be extracted from binaries and matched to identify reused func-
tions, actions, or open source software packages. Experimental results show that our
approach yields promising results. Furthermore, we demonstrate the effectiveness of our
approach through a case study using two malware known to share common functional-
ities, namely, Zeus and Citadel.

© 2015 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

control flow, varying registers and memory locations based
on the processor and compiler, and the possibility of in-

The reverse engineering of binary code is generating
significant interest among anti-virus companies, security
experts, digital forensics consultants, law-enforcement
agencies, national security agencies, etc. The objective of
reverse engineering often involves understanding both the
control and data-flow structures of the functions in the
given binary code. However, this is usually a challenging
task, because binary code inherently lacks structure due to
the use of jumps and symbolic addresses, highly optimized

* This research is the result of a fruitful collaboration between the
Computer Security Laboratory (CSL) of Concordia University, Defence
Research and Development Canada (DRDC) Valcartier and Google under a
DND/NSERC Research Partnership Program.

* Corresponding author.

E-mail address: s_alraba@encs.concordia.ca (S. Alrabaee).

http://dx.doi.org/10.1016/j.diin.2015.01.011

terruptions (Balliu et al., 2014).

To assist reverse engineers in such a challenging task,
automated tools for efficiently recognizing reused func-
tions and their open source origins for binary code are
highly desirable. This is especially true in the context of
malware analysis, since modern malware are known to
contain a significant amount of library code derived from
either standard compiler libraries or open source software
packages. The Flame malware, for instance, contains pub-
licly available code packages, including SQLite and LUA
(Bencsath et al., 2012). Hence, the ability to automatically
identify reused functions may greatly enhance the effec-
tiveness and efficiency of reverse engineering in such cases.

Existing techniques for identifying reused functions can
be roughly categorized into static and dynamic approaches.

1742-2876/© 2015 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).


http://creativecommons.org/licenses/by-nc-nd/4.�0/
mailto:s_alraba@encs.concordia.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2015.01.011&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2015.01.011
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://dx.doi.org/10.1016/j.diin.2015.01.011
http://dx.doi.org/10.1016/j.diin.2015.01.011

S62 S. Alrabaee et al. / Digital Investigation 12 (2015) S61—-S71

In a static approach to function identification, different
methods have focused on features at different levels (e.g.,
syntactical, semantical). For example, one existing tech-
nique counts mnemonics (opcode names, e.g., add or mov)
in a sliding window over program text (Myles and Collberg,
2005). Another technique discovers exact and inexact
clones in binaries through n-grams with normalization
(linear naming of registers and memory locations) to
address changes in names across different binaries
(Saebjernsen et al., 2009). Recently, an approach combines
n-grams with small non-isomorphic sub-graphs of the
control—flow graph to allow for structural matching (Khoo
et al.,, 2013). More recently, another approach introduces
tracelet-based code search in executables that attempts to
statistically locate similar functions in the code base after
translating the assembly instructions into an intermediate
language (David and Yahav, 2014). While those techniques
are not intended to address malware binaries, the authors
in Ruttenberg et al. (2014) identify shared software com-
ponents to support malware forensics. In contrast to most
static approaches that focus on one type of features, our
approach combines different sources of information into
one unified representation of binary code and thus has the
potential of producing more accurate results. As to dynamic
approaches, since they typically involve executing the code
in order to detect the functionality, such approaches usu-
ally suffer from prohibitive runtime or exponential growth
of execution paths (Calvet et al., 2012; Grobert et al., 2011).

In this paper, we propose SIGMA, a technique for iden-
tifying reused functions in binary code by matching traces
of a novel representation of binary code, namely, the se-
mantic integrated graph (SIG). The SIG s enhance and merge
several existing concepts from classic program analysis,
including control flow graph, register flow graph, and
function call graph, into a joint data structure. Such a
comprehensive representation allows us to capture
different semantic descriptors of common functionalities in
a unified manner as traces of SIG graphs. Such SIG graph
traces can then be extracted from binaries and matched,
either exactly or approximately, to identify reused func-
tions, actions, or open source software packages.

In summary, our contributions to the problem of iden-
tifying reused functions in binary code are as follows.

e We introduce the novel SIG representation of binary
code to unify various semantic information, such as
control flow, register manipulation, and function call
into a joint data structure to facilitate more efficient
graph matching.

e We define different types of traces such as normal
traces, AND-traces, and OR-traces over SIG graphs,
which are used for inexact matching. We carry out both
exact and inexact matching between different binaries,
where an exact matching applies to two SIG graphs with
the same graph properties (e.g. number of nodes),
whereas an inexact matching employs graph edit dis-
tance to measure the degree of similarity between two
SIG graphs of different sizes.

e We evaluate our method by experimenting different
variants of sort and encryption functions. Experimental

results show that our method achieves similarity score
close to an optimal similarity matching.

e Finally, we demonstrate the effectiveness of our
approach through a case study using two known mal-
ware, which share common functionalities, namely,
Zeus and Citadel.

The rest of the paper is organized as follows. Section
Existing Representations of Binary Code reviews several
existing representations of binary code. Section SIGMA
Approach provides a detailed description of the main
methodology. Section Experimental Results evaluates the
proposed approach and compares it to existing work. Sec-
tion Case Study describes our case study. Section
Limitations and Future Direction gives limitations and
future directions. Section Related Work reviews related
work, and Section Conclusion draws conclusions.

Existing representations of binary code

Numerous representations of binary code have been
developed for different purposes of program analysis, such
as data flow analysis, control flow analysis, call graph
analysis, structural flow analysis, register manipulation
analysis, and program dependency analysis. While these
representations have been designed primarily for
analyzing binary code, they can certainly be employed to
characterize the code. In particular, we focus on three
representations that capture structural information,
namely, control flow graph, register flow graph, and
function call graph. These representations form the basis
of our approach to identifying reused functions in binary
code. For the sake of clarity, we introduce a running
example to illustrate these representations using the
following sample code (bubble sort).

void bubble_sort(int arr[], int size) {
bool not_sorted = true;
int j=0,tmp;
while (not_sorted)
{
not_sorted = false;
jrs
for (int i = 0; i < size - j; i++){
if (arrl[i] > arr[i + 11) {
tmp = arr[i];
arr[i] = arr[i + 1];
arr[i + 1] = tmp;
not_sorted = true;
}//end of if
print_array(arr,5);
}//end of for loop
}//end of while loop
}//end of bubble_sort

Control flow graph

Control Flow Graphs (CFGs) have been used for a variety
of applications, e.g., to detect variants of known malicious



Download English Version:

https://daneshyari.com/en/article/457885

Download Persian Version:

https://daneshyari.com/article/457885

Daneshyari.com


https://daneshyari.com/en/article/457885
https://daneshyari.com/article/457885
https://daneshyari.com

