Digital Investigation 12 (2015) S90—S101

Digital _
Investigation

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

DFRWS 2015 Europe
A scalable file based data store for forensic analysis

@ CrossMark

Flavio Cruz *, Andreas Moser °, Michael Cohen

@ Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
b Google Inc., Brandschenkestrasse 110, Zurich, Switzerland

ABSTRACT

Keywords:

Distributed database
Incident response
Sqlite

Evidence analysis
Distributed computing

In the field of remote forensics, the GRR Response Rig has been used to access and store
data from thousands of enterprise machines. Handling large numbers of machines requires
efficient and scalable storage mechanisms that allow concurrent data operations and
efficient data access, independent of the size of the stored data and the number of ma-
chines in the network. We studied the available GRR storage mechanisms and found them
lacking in both speed and scalability. In this paper, we propose a new distributed data store
that partitions data into database files that can be accessed independently so that
distributed forensic analysis can be done in a scalable fashion. We also show how to use
the NSRL software reference database in our scalable data store to avoid wasting resources
when collecting harmless files from enterprise machines.

© 2015 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Digital Forensics necessarily deals with the storage,
manipulation and exchange of large quantities of data, from
disk images, memory images, to logical objects such as files,
and analysis results (Garfinkel, 2010). In addition, practi-
tioners do not only need to store large quantities of data,
but they also need to be able to analyze it and ensure it can
be easily exchanged.

Traditionally, proprietary storage formats such as the
Eye Witness Format (EWF) have been developed to store
evidence in structured containers (Guidance Software,
2014). Other proposals facilitate the free interchange of
data, one example is DFXML which stores digital forensic
information within an XML schema (Garfinkel, 2012).

The Advanced Forensic Format 4 (AFF4) was initially
proposed as an interchange format for digital evidence
(Cohen et al., 2009). The AFF4 proposal is essentially an
object data store — objects are defined with appropriate
behaviors and these are stored in the evidence file. The

* Corresponding author.
E-mail address: flaviocruz@gmail.com (F. Cruz).

http://dx.doi.org/10.1016/j.diin.2015.01.016

original AFF4 paper describes a data-at-rest file format
centered around the Zip archive format and a number of
objects with predefined behaviors (such a Containers,
Streams etc). These objects are instantiated through a
central Resolver which abstracts file storage details from the
application.

The GRR Rapid Response (GRR) framework is a live
forensic and incident response framework constructed
using the AFF4 technology (Cohen et al.,, 2011). Rather than
operating on static evidence files, the Resolver in GRR is
implemented as an abstraction to a NoSQL data store. The
application then uses the Resolver to permanently store
AFF4 objects inside a NoSQL data store, while the rest of the
application only deals with high level objects. NoSQL
technologies are becoming increasingly popular in forensic
analysis (Wen et al., 2013) since they offer more flexibility
and scalability than relational databases (Parker et al.,
2013).

The initial implementation of GRR was based around the
proprietary BigTable technology (Chang et al.,, 2008) and
demonstrates impressive scalability in remote response of
very large numbers of machines. In the open source version
of GRR that has since been released, the framework sup-
ports a number of interchangeable data store backends. By

1742-2876/© 2015 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).


http://creativecommons.org/licenses/by-nc-nd/4.�0/
mailto:flaviocruz@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2015.01.016&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2015.01.016
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://dx.doi.org/10.1016/j.diin.2015.01.016
http://dx.doi.org/10.1016/j.diin.2015.01.016

F. Cruz et al. / Digital Investigation 12 (2015) S90—-S101 S91

default, GRR uses a backend based on MongoDB (MongoDB,
2014). Other options include for example a MySQL (MySQL,
2014) backend. The scalability of the GRR system heavily
depends on the performance of the data store technology,
so choosing the underlying technology is extremely
important.

In this paper we present a new data store backend that
can be used as a storage layer for the AFF4 Resolver. We
analyze the access patterns of AFF4 objects focusing spe-
cifically on the way that the GRR system utilizes the AFF4
space. By tailoring the data storage to the specific use case
presented by GRR and AFF4, we implement a data storage
layer that significantly improves the overall scalability of
the GRR system in general.

This paper is organized as follows: First, we present the
AFF4 object model and specifically examine how the GRR
system utilizes the AFF4 abstraction. By analyzing the
specific access pattern we propose a novel implementation
of a NoSQL data store engine based on the SQLite database
technology. We then evaluate the new data store in com-
parison to previous data stores. Finally, we utilize the new
data store to perform a typical forensic analysis step —
collect all the executable files on a Windows system which
are not already known by the NSRL software reference
database (NSRL, 2014b). The use of NSRL and other hash de-
duplication techniques has been demonstrated in the past
to dramatically increase the efficiency of evidence collec-
tion and analysis, particularly for remote forensic applica-
tions (Rowe, 2012; Fisher, 2001; Watkins et al., 2009).

The AFF4 object model

The Advanced Forensic Format 4 (AFF4) was initially
proposed as an interchange format for digital evidence that
stores forensic data in object abstractions. All AFF4 Objects
have a type, which specifies their behavior (e.g. An object of
type AFF4Stream can be used to present an abstract stream
interface), and a number of data attributes that contain
additional information about the object (Cohen et al.,
2009).

Every AFF4 object is identified by a Universal Resource
Name (URN) which specifies an object uniquely within the
AFF4 namespace. A URN is globally unique within the AFF4
universe and all access to AFF4 objects occurs via the AFF4
Resolver — a central logical factory for AFF4 objects. One can
open, create and store AFF4 objects through the resolver,
without consideration to their actual persistent
serialization.

An important property of the AFF4 design is that the
AFF4 namespace universe is assumed to be incomplete at
any specific time. For example, when one obtains an AFF4
volume containing a number of AFF4 objects, it does not
imply that we know the complete subset of the AFF4 uni-
verse. For example, an AFF4 object may refer to other AFF4
objects which are not necessary stored in that specific
volume (i.e., there may be unresolved external references).
This property allows merging different AFF4 volumes
containing overlapping parts of the AFF4 namespace.
Similarly, it does not make sense to directly enumerate any
parts of the AFF4 namespace (since any specific imple-
mentation can not know the complete space). All AFF4

objects are related via semantic relations and therefore the
AFF4 subsystem does not directly enumerate names, but
must follow existing semantic links.

The following example illustrates this important point.
Consider the logical collection of files on one machine's
filesystem. The container aff4:/C.12345/fs/os/c:/Windows
refers to the Windows directory of that filesystem. If we
want to list the files contained within the Windows
directory, we can not simply query the AFF4 subsystem
directly to enumerate all URNs (e.g. with a wild card of
aff4:/C12345/fs/os/c:/Windows/*.*). Instead, we must
explicitly store references to all children inside the AFF4-
Volume object aff4:/C.12345/fs/os/c:/Windows itself, which
are then used to retrieve the children of the directory.

The overall effect is that the data store must only sup-
port access to AFF4 URNs by exact name, rather than pro-
vide enumeration strategies. For the use of AFF4 in the GRR
application this means that the application itself must
maintain internal indexes to support object enumeration in
cases where this is needed. For these reasons, modern key-
value store NoSQL databases are a particularly good fit for
serving the needs of the AFF4 data model (Grolinger et al.,
2013).

The GRR rapid response framework

The GRR Rapid Response (GRR) Framework is a modern
incident response and remote forensic tool designed to
perform live forensics on a large number of systems. The
GRR framework is outlined in Fig. 1. Although the details of
the system are specified elsewhere (Cohen et al., 2011), the
most pertinent point of this architecture is that GRR is
constructed over the AFF4 subsystem. In practice, this
means that all data stored in the GRR data store consists of
serialized AFF4 objects. The AFF4 Resolver which allows

Clients

Frontend Workers

e

AFF4 Subsystem

7>

Data Store

Fig. 1. The GRR Architecture. Clients use the HTTP protocol to exchange
messages with the Frontend servers. Frontend servers in turn communicate
with the AFF4 subsystem to queue messages in the data store. Workers
communicate with the AFF4 subsystem in order to perform analysis tasks
and schedule new operations on the clients. Note that all parts of the GRR
framework interact with the AFF4 subsystem, which in turn abstracts access
to the data store.



Download English Version:

https://daneshyari.com/en/article/457888

Download Persian Version:

https://daneshyari.com/article/457888

Daneshyari.com


https://daneshyari.com/en/article/457888
https://daneshyari.com/article/457888
https://daneshyari.com

