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s u m m a r y

The use of artificial neural networks (ANNs) for the modelling of water resources variables has increased
rapidly in recent years. This paper addresses one of the important issues associated with artificial neural
network model development; input variable selection. In this study, the partial mutual information (PMI)
input selection algorithm is modified to increase its computational efficiency, while maintaining its accu-
racy. As part of the modification, use of average shifted histograms (ASHs) is introduced as an alternative
to kernel based methods for the estimation of mutual information (MI). Empirical guidelines are devel-
oped to estimate the key ASH parameters as a function of sample size. The stopping criterion used with
the original PMI algorithm is replaced with a more computationally efficient outlier detection technique
based on the Hampel distance. The performance of the proposed PMI algorithm, in terms of computa-
tional efficiency and input selection accuracy, is first investigated by using it to identify significant vari-
ables for data series where dependencies of attributes are known a priori. The proposed ASH PMI input
variable selection algorithm with the Hampel distance stopping criterion consistently selects the correct
inputs, while being computationally efficient. The modified PMI algorithm is then applied to identify suit-
able inputs to forecast salinity in the River Murray at Murray Bridge, South Australia, with a lead time of
14 days using an ANN approach. The ANN models developed with the inputs selected with the modified
PMI algorithm perform very well when compared with results obtained using ANN models with different
input sets developed in previous studies. Furthermore, the proposed input variable selection algorithm
results in more parsimonious ANN models.

� 2008 Elsevier B.V. All rights reserved.

Introduction

There has been a rapid increase in the use of artificial neural
networks (ANNs) for hydrological modelling (Maier and Dandy,
2000; Dawson and Wilby, 2001) due to their ease of development,
decreased reliance on expert knowledge of the system under inves-
tigation and non-linear modelling capabilities. One of the signifi-
cant steps in ANN model development is the selection of an
appropriate set of input variables from the available candidates
(e.g. Maier and Dandy, 2001; Bowden et al., 2005a; May et al.,
2008). This is because the performance of data driven techniques,
such as ANNs, is highly sensitive to the selected input variables.
If relevant inputs are omitted (i.e. the model is under specified),
the model is unable to capture the desired input–output relation-
ships. On the other hand, if the model includes superfluous inputs
(i.e. the model is over-specified), the following effects might incur:
(i) the size, computational complexity and memory requirements
of the model increase, (ii) model calibration becomes more difficult
due to an increase in the size of the search space and the increased

presence of local optima, (iii) the extraction of physical meaning
from calibrated models is more difficult and (iv) more data are
needed to efficiently estimate the optimal values of the connection
weights (Back and Trappenberg, 1999; Maier and Dandy, 1997;
Zheng and Billings, 1996).

Due to the negative consequences of over- and under-specifica-
tion outlined above, there are distinct advantages in using analyt-
ical procedures for selecting an optimal model input vector from a
set of candidates. When choosing an appropriate input selection
algorithm, the following four factors need to be considered.

1. Input selection algorithms need to be able to determine the
strength of the relationship between potential model inputs
and outputs. The approaches used to achieve this generally fall
into two categories: model-based and model-free. Model-based
approaches use the performance of calibrated models with dif-
ferent inputs as the basis for choosing the most appropriate
input vector. This has the advantage that non-linear relation-
ships in the data can be taken into account. However, as ANNs
have to be trained before the strength of the relationship
between potential model inputs and output(s) can be deter-
mined, near-optimal model structures and values of the
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connections weights have to be obtained for each of the models
developed. If this is not the case, the model inputs obtained
based on the strength of the relationships extracted from the
trained model are likely to be sub-optimal or even misleading.
Model-free approaches overcome this shortcoming by using
statistical measures of dependence to determine the strength
of the relationship between candidate model inputs and the
model output prior to model specification and calibration. How-
ever, care needs to be taken that non-linear dependence mea-
sures, such as mutual information, are used, rather than linear
measures, such as correlation.

2. Input selection algorithms should cater for redundancy in can-
didate model inputs. Although a candidate model input might
have a strong relationship with the model output, this informa-
tion might be redundant if the same information is already
provided by another input. In model-based approaches,
redundancy is generally taken into account implicitly by use
of a stepwise model-building process (e.g. forward selection
or backward elimination). In model-free approaches, stepwise
partial model building approaches (e.g. partial correlation, par-
tial mutual information) can be used to eliminate redundant
inputs.

3. Both model-based and model-free approaches generally use a
stepwise process in the identification of appropriate model
inputs. Consequently, there is a need for a stopping criterion
that helps determine when to stop adding or removing candi-
date inputs. In model-based approaches, information criteria,
such as Akaike’s and Bayes’ information criterion, provide viable
alternatives, as they balance prediction error with model com-
plexity. When using model-free approaches, the use of signifi-
cance measures is well established for correlation-based
methods. However, the same does not apply to non-linear
dependence measures, such as mutual information, although
Sharma (2000) and Bowden et al. (2005a) showed that the
use of bootstrap methods can provide a suitable means of deter-
mining appropriate stopping criteria in such instances.

4. The computational efficiency of the input selection approach
used is paramount, particularly when dealing with large data-
sets, as is the case for many hydrological modelling applica-
tions. Model-based approaches are generally very
computationally inefficient, as they require the development
(e.g. determination of optimal model structure, model calibra-
tion) of a large number of models. The efficiency of model-free
approaches is a function of the dependence measure used. Use
of correlation as the dependence measure is computationally
efficient, but does not cater for non-linear dependencies, as dis-
cussed above. Use of mutual information as the dependence
measure is generally computationally inefficient, although this
depends on the method used to obtain estimates of mutual
information, as well as the stopping criterion used.

In a review of approaches used to select the inputs to ANN mod-
els, Bowden et al. (2005a) concluded that the partial mutual infor-
mation (PMI) algorithm of Sharma (2000) was superior to methods
commonly used to determine the inputs to ANN models, as it is
model-free, uses a non-linear measure of dependence (mutual
information), is able to cater for input redundancy and has a
well-defined stopping criterion. They also demonstrated the utility
of the algorithm for selecting appropriate inputs to ANN models for
hydrological applications (Bowden et al., 2005b). However, the
algorithm is relatively computationally inefficient, particularly
when dealing with large datasets.

The PMI algorithm’s computational efficiency is a function of
the method used to estimate mutual information (MI), as well as
the number of times estimates of MI have to be obtained. In
relation to the calculation of mutual information, this requires

the estimation of marginal and joint probability densities. Com-
monly used density estimation techniques in the context of calcu-
lating MI include histograms and kernel density methods. Kernel
based MI estimators are generally considered to be more reliable
than histogram based approaches (Moon et al., 1995) and have
therefore been used as part of the PMI algorithm (Bowden et al.,
2005b; May et al., 2008; Sharma et al., 2000). However, the compu-
tational requirements associated with kernel density estimates are
much greater than those associated with histogram based meth-
ods, especially when dealing with large data sets, such as those
commonly used in hydrological modelling. In relation to the num-
ber of times estimates of MI have to be obtained, this is a function
of the stopping criterion used. Both Sharma (2000) and Bowden
et al. (2005a,b) used bootstrap methods to estimate the 95th per-
centile confidence limit of MI in order to determine when to stop
adding candidate inputs. Use of this stopping criterion requires re-
peated estimation of MI values, further reducing the computational
efficiency of the algorithm. Sharma (2000) and Bowden et al.
(2005a) used 100 bootstraps for each iteration, generally requiring
1000s of estimates of MI, depending on the sample size and num-
ber of significant inputs. While this bootstrap size was found to
produce accurate results for the test cases considered, bootstrap
sizes between 5000 and 10,000 may be needed to obtain reliable
estimates of the required confidence intervals, depending on the
complexity of the problem (Chernick, 1999). This could make use
of the algorithm computationally intractable for many hydrologi-
cal case studies.

In this paper, a more computationally efficient version of the
PMI algorithm is developed, tested and applied. As part of the pro-
posed algorithm, computationally efficient estimates of MI are ob-
tained by using average shifted histograms (ASHs) for density
estimation. In addition, the number of times MI estimates have
to be obtained is reduced significantly by using a stopping criterion
that does not rely on the bootstrap method. As the accuracy of
ASHs is a function of two user-defined parameters, guidelines for
choosing these parameters are developed. In order to test the util-
ity of the proposed algorithm, its performance is compared with
that of the traditional PMI algorithm for a number of benchmark
test cases in terms of accuracy and computational efficiency. Final-
ly, the proposed algorithm is applied to the case study of forecast-
ing salinity in the River Murray at Murray Bridge, South Australia,
14 days in advance, and the results compared with those obtained
in previous studies in terms of the inputs identified as significant
and the accuracy of the resulting forecasts.

Background

Mutual information

For a set of N bivariate measurements, zi = (xi,yi), i = 1, ... ,N,
which are assumed to be independent, identically distributed real-
izations of a random variable Z = (X,Y), mutual information is de-
fined as

IðX;YÞ ¼
Z Z

fx;yðx; yÞloge
fx;yðx; yÞ

fxðxÞfyðyÞ
dxdy ð1Þ

where fx(x) and fy(y) are the marginal probability density functions
of X and Y, respectively, and fx, y(x,y) is the joint probability density
function of X and Y.

The mutual information score in (1) can be approximated as

MI ¼ 1
N

XN

i¼1

loge
fx;yðxi; yiÞ

fxðxiÞfyðyiÞ

� �
ð2Þ

where fx(xi), fy(yi) and fx,y(xi, yi) are the respective marginal and joint
densities estimated at the sample data point (Bonnlander, 1996;

166 T.M.K.G. Fernando et al. / Journal of Hydrology 367 (2009) 165–176



Download	English	Version:

https://daneshyari.com/en/article/4579002

Download	Persian	Version:

https://daneshyari.com/article/4579002

Daneshyari.com

https://daneshyari.com/en/article/4579002
https://daneshyari.com/article/4579002
https://daneshyari.com/

