Journal of Hydrology 364 (2009) 99-106

journal homepage: www.elsevier.com/locate/jhydrol

Contents lists available at ScienceDirect

Journal of Hydrology

b

A numerical solution for non-Darcian flow to a well in a confined aquifer
using the power law function

Zhang Wen *?, Guanhua Huang

ab» Hongbin Zhan ¢

2 Department of Irrigation and Drainage, College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing 100083, PR China
b Chinese-Israeli International Center for Research and Training in Agriculture, China Agricultural University, No. 17 Qinghua Donglu, Beijing 100083, PR China
€ Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843-3115, USA

ARTICLE INFO

SUMMARY

Article history:

Received 30 March 2008

Received in revised form 28 August 2008
Accepted 20 October 2008

Keywords:

Non-Darcian flow
Power law

Finite difference method
Laplace transform
Linearization method

In this study, we have obtained numerical solutions for non-Darcian flow to a well with the finite differ-
ence method on the basis of the Izbash equation, which states that the hydraulic gradient is a power func-
tion of the specific discharge. The comparisons between the numerical solutions and the Boltzmann
solutions and linearization solutions have also been done in this study. The results indicated that the lin-
earization solutions for both the infinitesimal-diameter well and the finite-diameter well agree very well
with the numerical solution at late times, while the linearization method underestimates the dimension-
less drawdown at early and moderate times. The Boltzmann method works well as an approximate ana-
lytical solution for the infinitesimal-diameter well. Significant differences have been found between the
Boltzmann solution for a finite-diameter well and the numerical solution during the entire pumping per-
iod. The analysis of the numerical solution implies that all the type curves inside the well for different
dimensionless non-Darcian conductivity kp values approach the same asymptotic value at early times,
while a larger kp leads to a smaller drawdown inside the well at late times. A larger kp results in a larger
drawdown in the aquifer at early times and a smaller drawdown in the aquifer at late times. Flow

approaches steady-state earlier when kp is larger.

© 2008 Elsevier B.V. All rights reserved.

Introduction

Darcy’s law has been used to simulate groundwater flow for
more than 100 years. However, when the groundwater flow veloc-
ity becomes sufficiently high or sufficiently low, flow can be non-
Darcian (e.g. Polubariava-Kochina, 1962; Wright, 1964; Basak
and Madhav, 1979; Boast and Baveye, 1989; Venkataraman and
Rao, 2000; Moutsopoulos and Tsihrintzis, 2005; Chen et al., 2003;
Kohl et al., 1997; Qian et al., 2005, 2007). There are two general
types of non-Darcian flow, i.e. pre-linear flow and post-linear flow.
The pre-linear flow often occurs at very low Reynolds numbers
(Firdaouss et al.,, 1997) such as in clay-rich aquitards (Teh and
Nie, 2002) and in some petroleum reservoirs (Wattenbarger and
Ramey, 1969), while the post-linear flow often occurs at very high
Reynolds number (Zeng and Grigg, 2006) such as near the pumping
wells (Sen, 1987, 1988a,b, 1989, 1990; Wu, 2002a,b; Wen et al,,
2006, 2008a,b,c). In this paper, we only consider the post-linear
flow for the high velocities near the pumping wells.
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A key issue in non-Darcian flow is to quantify the relationship
between the specific discharge and hydraulic gradient. Two formu-
lae have been commonly used. The first one is the Forchheimer
equation (Forchheimer, 1901), which states that the hydraulic gra-
dient is a second-order polynomial function of the specific dis-
charge. It should be pointed out that there are some alternative
ways to present the Forchheimer equation (e.g. Thiruvengadam
and Kumar, 1997; Nield, 2002; Moutsopoulos, 2007). For instance,
Nield (2002) stated that a local time derivative inertial term and an
advective inertial term should be added with the hydraulic gradi-
ent on the left hand side of the equation, while the so-called
“Brinkman viscous term” should be added with the specific dis-
charge on the right hand side of the equation. Meanwhile, Moutso-
poulos (2007) pointed out that these extra terms are non-
negligible only for very short times. The second one is the Izbash
equation (Izbash, 1931), which states that the hydraulic gradient
is a power function of the specific discharge. Many experimental
data indicated that both these two functions can describe non-Dar-
cian flow very well (Bordier and Zimmer, 2000; Yamada et al.,
2005).

Up to now, many analytical solutions for non-Darcian flow have
been presented. For instance, Sen (1987, 1988a,b, 1989, 1990) have
obtained analytical solutions for non-Darcian flow to a well using
the Boltzmann transform method, a special form of the so-called
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Nomenclature

r distance from the center of well [L]
Tw effective radius of well screen [L]
Te radius of well casing [L]

t pumping time [T]

q(r,t)  specific discharge [L/T]

s(r, t) drawdown [L]

Sw(t) drawdown inside well [L]

m aquifer thickness [L]

S storage coefficient of aquifer

n power index, an empirical constant in the Izbash equa-
tion

k quasi hydraulic conductivity, an empirical constant in
the Izbash equation

p Laplace variable

Q pumping discharge [L/T]

I'(x) Gamma function

Ky(x) the second kind v-order modified Bessel function

p dimensionless distance defined in Table 1

T'wD dimension radius of well screen defined in Table 1

Tep dimensionless radius of well casing defined in Table 1

tp dimensionless time defined in Table 1

o dimensionless specific discharge defined in Table 1

Sp dimensionless drawdown defined in Table 1

SwD dimensionless drawdown inside the well defined in Ta-
ble 1

kp dimensionless non-Darcian flow hydraulic conductivity
defined in Table 1

similarity method. Wen et al. (2006, 2008c) have also used the
Boltzmann transform to solve the non-Darcian flow problem to a
well in confined aquifers. Meanwhile, Wen et al. (2008c) pointed
out that the Boltzmann transform can only be used in an approxi-
mate rather than a rigorous mathematical sense. Additionally,
Camacho and Vasquez (1992) pointed out that the Boltzmann
transform cannot be employed to solve non-Darcian flow problems
because of non-linearity of the governing equations. Recently, Wen
et al. (2008a,b) have used a linearization method coupling with the
Laplace transform to solve the non-Darcian flow toward a well in a
confined aquifer. They stated that this linearization procedure
might work very well at late times, while at early times it will bring
about some errors.

As summarized before, both the Boltzmann transform and the
linearization method have some limitations. The primary limita-
tion of the Boltzmann transform is that such a transform requires
both the governing equation and the initial and boundary condi-
tions to be transformable by the Boltzmann variable which is the
ratio of the radial distance square over time. Such a requirement
is often not satisfied for non-Darcian flow. The limitation of the lin-
earization method is that it involves a quasi steady-state approxi-
mation which does not work well at early times. Fortunately, many
numerical solutions have been developed for non-Darcian flow.
Mathias et al. (2008), Choi et al. (1997), Wu (2002a,b), and Ewing
and Lin (2001) developed numerical solutions on the basis of the
finite difference scheme, whereas Ewing et al. (1999) solved the
Forchheimer non-Darcian flow based on the finite element meth-
od. Kolditz (2001) has used the finite element scheme to solve
non-Darcian flow in fractured rock based on the assumption that
the relationship between the specific discharge and hydraulic gra-
dient can be described by a power function. Mathias et al. (2008)
developed a numerical solution for the Forchheimer non-Darcian
flow to a well and compared their results with those obtained by
the Boltzmann transform and linearization methods. They found
that both the “Boltzmann solution” (Sen, 1988b) and the lineariza-
tion solution (Wen et al., 2008a) worked well at late times, while
some differences have been found at early and moderate times.
Ewing et al. (1999) developed several numerical schemes, e.g. the
cell-centered finite difference, the Galerkin finite element, and
the mixed finite element models for the Forchheimer non-Darcian
flow. So far, most of the numerical solutions for non-Darcian flow
are based on the Forchheimer equation (e.g. Mathias et al., 2008;
Choi et al., 1997; Wu, 2002b). However, it is equivalently impor-
tant to study the Izbash non-Darcian flow with the numerical
simulations.

The objectives of this paper are to develop a finite difference
solution for the non-Darcian flow toward a finite-diameter well

in a confined aquifer with the Izbash equation, and to verify the
previous solutions obtained by the Boltzmann transform based
method (Sen, 1989; Wen et al., 2008c) and the linearization
approximation method (Wen et al., 2008a) using the numerical
solution.

Continuity equation
Governing equation

The schematic system discussed here is the same as Papadopu-
los and Cooper (1967). As shown in Fig. 1, flow to a finite-diameter
well which fully penetrates a confined aquifer is considered. The
aquifer is assumed to be homogenous and horizontally isotropic.
The whole system is hydrostatic before the start of pumping, and
the pumping rate is supposed to be constant. Under these assump-
tions, the problem discussed here can be described as (Papadopu-
los and Cooper, 1967; Wen et al., 2008a,c):

10 S os(r,t)
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in which q(r, t) is the specific discharge at radial distance r and time
t, s(r, t) is the drawdown, S is the storage coefficient of aquifer, m is
the thickness of aquifer, r,, is the effective radius of the well, r. is the
radius of well casing. In most cases, the radius of well casing r. is
larger than, instead of equal to, the effective radius of the well r,.
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Figure 1. The schematic diagram of the problem.
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